
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming

15-213: Introduction to Computer Systems
23rd Lecture, April 12, 2018

Instructor:
Franz Franchetti and Seth C. Goldstein and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Race

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock
 Example from signal handlers.
 Why don’t we use printf in handlers?

void catch_child(int signo) {
 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {
 ...
 for (i = 0; i < 1000000; i++) {
 if (fork() == 0) {
 // in child, exit immediately
 exit(0);
 }
 // in parent
 sprintf(buf, "Child #%d started\n", i);
 printf("%s", buf);
 }
 return 0;
}

Icurr
Inext

Acquire
lock Request

lock

Receive
signal

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Printf Deadlock
void catch_child(int signo) {
 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {
 ...
 for (i = 0; i < 1000000; i++) {
 if (fork() == 0) {
 // in child, exit immediately
 exit(0);
 }
 // in parent
 sprintf(buf, "Child #%d started\n", i);
 printf("%s", buf);
 }
 return 0;
}

Child #0 started
Child #1 started
Child #2 started
Child #3 started
Child exited!
Child #4 started
Child exited!
Child #5 started
 .
 .
 .
Child #5888 started
Child #5889 started

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Livelock

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Livelock

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Starvation
 Yellow must yield to

green
 Continuous stream

of green cars
 Overall system

makes progress, but
some individuals
wait indefinitely

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:
 Races: outcome depends on arbitrary scheduling decisions

elsewhere in the system
 Example: who gets the last seat on the airplane?

 Deadlock: improper resource allocation prevents forward progress
 Example: traffic gridlock

 Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
 Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the
scope of our course..
 but, not all 
 We’ll cover some of these aspects in the next few lectures.

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

It may be hard, but …

 it can be useful and sometimes necessary!

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Reminder: Iterative Echo Server
Client Server
socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server
connect

accept

write read

call read

close close

write ret read
read

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2
connect

accept connect

write read

call read

close

accept

write

read

close Wait for server
to finish with
Client 1

call read

write

ret read

write ret read
read

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Block?

 Second client attempts to
connect to iterative server

 Call to connect returns
 Even though connection not

yet accepted
 Server side TCP manager

queues request
 Feature known as “TCP

listen backlog”

 Call to rio_writen returns
 Server side TCP manager

buffers input data

 Call to rio_readlineb
blocks
 Server hasn’t written

anything for it to read yet.

Client
socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
 Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read
from server

Server blocks
waiting for
data from

Client 1

Client 1 Server Client 2
connect

accept connect

write call read

call read
write

call read
write ret read

call read

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers
Allow server to handle multiple clients concurrently

1. Process-based
 Kernel automatically interleaves multiple logical flows
 Each flow has its own private address space

2. Event-based
 Programmer manually interleaves multiple logical flows
 All flows share the same address space
 Uses technique called I/O multiplexing

3. Thread-based
 Kernel automatically interleaves multiple logical flows
 Each flow shares the same address space
 Hybrid of of process-based and event-based

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers
 Spawn separate process for each client

client 1 server

call connect call accept

call read

ret accept

call fgets
fork child 1

User goes
out to lunch

Client 1

blocks
waiting for

user to type
in data

call accept

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers
 Spawn separate process for each client

client 1 server client 2

call connect call accept

call read

ret accept call connect

call fgets
fork child 1

User goes
out to lunch

Client 1

blocks
waiting for

user to type
in data

call accept
ret accept

call fgets

write fork

call
read

child 2

write

call read

ret read
close

close

...

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 echo(connfd);
 Close(connfd);
 }
 exit(0);
}

Iterative Echo Server

echoserverp.c

Accept a connection request
Handle echo requests until client terminates

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 echo(connfd); /* Child services client */
 Close(connfd); /* child closes connection with client */
 exit(0);

 }
}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 }
}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 }
}

Making a Concurrent Echo Server

echoserverp.c
Why?

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 }
}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 }
}

Process-Based Concurrent Echo Server

echoserverp.c

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server
(cont)

void sigchld_handler(int sig)
{
 while (waitpid(-1, 0, WNOHANG) > 0)
 ;
 return;
}

 Reap all zombie children

echoserverp.c

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

Server
Child

connfd(4)

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

 Each client handled by independent child process
 No shared state between them
 Both parent & child have copies of listenfd and connfd

 Parent must close connfd
 Child should close listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

 Listening server process must reap zombie children
 to avoid fatal memory leak

 Parent process must close its copy of connfd
 Kernel keeps reference count for each socket/open file
 After fork, refcnt(connfd) = 2
 Connection will not be closed until refcnt(connfd) = 0

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

 + Handle multiple connections concurrently
 + Clean sharing model
 descriptors (no)
 file tables (yes)
 global variables (no)

 + Simple and straightforward
 – Additional overhead for process control
 – Nontrivial to share data between processes
 (This example too simple to demonstrate)

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

 Server maintains set of active connections
 Array of connfd’s

 Repeat:
 Determine which descriptors (connfd’s or listenfd) have pending

inputs
 e.g., using select function
 arrival of pending input is an event

 If listenfd has input, then accept connection
 and add new connfd to array

 Service all connfd’s with pending inputs

 Details for select-based server in book

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

Active

Inactive

Active

Never Used

listenfd = 3
Active Descriptors

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

listenfd = 3
Pending Inputs

Read and service

Anything
happened?

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

 + One logical control flow and address space.
 + Can single-step with a debugger.
 + No process or thread control overhead.
 Design of choice for high-performance Web servers and search engines.

e.g., Node.js, nginx, Tornado

 – Significantly more complex to code than process- or thread-
based designs.

 – Hard to provide fine-grained concurrency
 E.g., how to deal with partial HTTP request headers

 – Cannot take advantage of multi-core
 Single thread of control

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Break Time!

 lollygag: “to waste time"

Check out:

Quiz: day 23: Concurrent programming

https://canvas.cmu.edu/courses/3822

https://canvas.cmu.edu/courses/3822/quizzes/9020
https://canvas.cmu.edu/courses/3822/quizzes/9020

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)
 …but using threads instead of processes

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data
Read-only code/data PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write data Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process
 Each thread has its own logical control flow
 Each thread shares the same code, data, and kernel context
 Each thread has its own stack for local variables

 but not protected from other threads
 Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

 Threads associated with process form a pool of peers
 Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

 Two threads are concurrent if their flows overlap in
time

 Otherwise, they are sequential

 Examples:
 Concurrent: A & B, A&C
 Sequential: B & C

Time

Thread A Thread B Thread C

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

 Single Core Processor
 Simulate parallelism by

time slicing

 Multi-Core Processor
 Can have true

parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes
 How threads and processes are similar
 Each has its own logical control flow
 Each can run concurrently with others (possibly on different cores)
 Each is context switched

 How threads and processes are different
 Threads share all code and data (except local stacks)

 Processes (typically) do not
 Threads are somewhat less expensive than processes

 Process control (creating and reaping) twice as expensive as thread
control

 Linux numbers:
– ~20K cycles to create and reap a process
– ~10K cycles (or less) to create and reap a thread

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
 Creating and reaping threads

 pthread_create()
 pthread_join()

 Determining your thread ID
 pthread_self()

 Terminating threads
 pthread_cancel()
 pthread_exit()
 exit() [terminates all threads]
 return [terminates current thread]

 Synchronizing access to shared variables
 pthread_mutex_init
 pthread_mutex_[un]lock

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main(int argc, char** argv)
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 return 0;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”
Main thread

Peer thread

return NULL; Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()returns

printf()

Peer thread
terminates

Pthread_create()returns

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server
int main(int argc, char **argv)
{
 int listenfd, *connfdp;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;
 pthread_t tid;

 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen=sizeof(struct sockaddr_storage);
 connfdp = Malloc(sizeof(int));
 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 Pthread_create(&tid, NULL, thread, connfdp);
 }
 return 0;
}

echoservert.c

 Spawn new thread for each client
 Pass it copy of connection file descriptor
 Note use of Malloc()! [but not Free()]

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{
 int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
}

 Run thread in “detached” mode.
 Runs independently of other threads
 Reaped automatically (by kernel) when it terminates

 Free storage allocated to hold connfd
 Close connfd (important!)

echoservert.c

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

 Each client handled by individual peer thread
 Threads share all process state except TID
 Each thread has a separate stack for local variables

Client 1
server

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

 Must run “detached” to avoid memory leak
 At any point in time, a thread is either joinable or detached
 Joinable thread can be reaped and killed by other threads

 must be reaped (with pthread_join) to free memory resources
 Detached thread cannot be reaped or killed by other threads

 resources are automatically reaped on termination
 Default state is joinable

 use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
 For example, passing pointer to main thread’s stack

 Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
 (next lecture)

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Potential Form of Unintended Sharing

main thread

peer1

 while (1) {
 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 Pthread_create(&tid, NULL, thread, &connfd);
 }

connfd

Main thread stack

vargp

Peer1 stack

connfd = connfd1

 connfd = *vargp

peer2

connfd = connfd2

 connfd = *vargp

Race!

Why would both copies of vargp point to same location?

Peer2 stack

vargp

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Could this race occur?

int i;
for (i = 0; i < 100; i++) {
 Pthread_create(&tid, NULL,
 thread, &i);
}

 Race Test
 If no race, then each thread would get different value of i
 Set of saved values would consist of one copy each of 0 through 99

Main
void *thread(void *vargp)
{
 int i = *((int *)vargp);
 Pthread_detach(pthread_self());
 save_value(i);
 return NULL;
}

Thread

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experimental Results

 The race can really happen!

No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct passing of thread arguments
/* Main routine */
 int *connfdp;
 connfdp = Malloc(sizeof(int));
 *connfdp = Accept(. . .);
 Pthread_create(&tid, NULL, thread, connfdp);

 Producer-Consumer Model
 Allocate in main
 Free in thread routine

/* Thread routine */
void *thread(void *vargp)
{
 int connfd = *((int *)vargp);
 . . .
 Free(vargp);

 . . .
 return NULL;
}

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

 + Easy to share data structures between threads
 e.g., logging information, file cache

 + Threads are more efficient than processes

 – Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
 The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads
 Hard to know which data shared & which private
 Hard to detect by testing

 Probability of bad race outcome very low
 But nonzero!

 Future lectures

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
 Hard to share resources: Easy to avoid unintended sharing
 High overhead in adding/removing clients

 Event-based
 Tedious and low level
 Total control over scheduling
 Very low overhead
 Cannot create as fine grained a level of concurrency
 Does not make use of multi-core

 Thread-based
 Easy to share resources: Perhaps too easy
 Medium overhead
 Not much control over scheduling policies
 Difficult to debug

 Event orderings not repeatable

	Concurrent Programming��15-213: Introduction to Computer Systems�23rd Lecture, April 12, 2018
	Concurrent Programming is Hard!
	Data Race
	Deadlock
	Deadlock
	Testing Printf Deadlock
	Livelock
	Livelock
	Starvation
	Concurrent Programming is Hard!
	Concurrent Programming is Hard!
	Reminder: Iterative Echo Server
	Iterative Servers
	Iterative Servers
	Where Does Second Client Block?
	Fundamental Flaw of Iterative Servers
	Approaches for Writing Concurrent Servers
	Approach #1: Process-based Servers
	Approach #1: Process-based Servers
	Iterative Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Process-Based Concurrent Echo Server
	Process-Based Concurrent Echo Server�(cont)
	Concurrent Server: accept Illustrated
	Process-based Server Execution Model
	Issues with Process-based Servers
	Pros and Cons of Process-based Servers
	Approach #2: Event-based Servers
	I/O Multiplexed Event Processing
	Pros and Cons of Event-based Servers
	Break Time!��	lollygag: “to waste time"
	Approach #3: Thread-based Servers
	Traditional View of a Process
	Alternate View of a Process
	A Process With Multiple Threads
	Logical View of Threads
	Concurrent Threads
	Concurrent Thread Execution
	Threads vs. Processes
	Posix Threads (Pthreads) Interface
	The Pthreads "hello, world" Program
	Execution of Threaded “hello, world”
	Thread-Based Concurrent Echo Server
	Thread-Based Concurrent Server (cont)
	Thread-based Server Execution Model
	Issues With Thread-Based Servers
	Potential Form of Unintended Sharing
	Could this race occur?
	Experimental Results
	Correct passing of thread arguments
	Pros and Cons of Thread-Based Designs
	Summary: Approaches to Concurrency

