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Concurrent Programming is Hard! 

 The human mind tends to be sequential 
 

 The notion of time is often misleading 
 

 Thinking about all possible sequences of events in a 
computer system is at least error prone and 
frequently impossible 
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Data Race 



Carnegie Mellon 

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Deadlock 
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Deadlock 
 Example from signal handlers. 
 Why don’t we use printf in handlers? 

void catch_child(int signo) { 
   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK! 
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children 
} 
 
int main(int argc, char** argv) { 
  ... 
  for (i = 0; i < 1000000; i++) { 
    if (fork() == 0) { 
      // in child, exit immediately 
      exit(0); 
    } 
    // in parent 
    sprintf(buf, "Child #%d started\n", i); 
    printf("%s", buf); 
  } 
  return 0; 
} 

Icurr 
Inext 

Acquire 
lock Request 

lock 

Receive 
signal 
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Testing Printf Deadlock 
void catch_child(int signo) { 
   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK! 
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children 
} 
 
int main(int argc, char** argv) { 
  ... 
  for (i = 0; i < 1000000; i++) { 
    if (fork() == 0) { 
      // in child, exit immediately 
      exit(0); 
    } 
    // in parent 
    sprintf(buf, "Child #%d started\n", i); 
    printf("%s", buf); 
  } 
  return 0; 
} 

Child #0 started 
Child #1 started 
Child #2 started 
Child #3 started 
Child exited! 
Child #4 started 
Child exited! 
Child #5 started 
  . 
  . 
  . 
Child #5888 started 
Child #5889 started 
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Livelock 
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Livelock 
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Starvation 
 Yellow must yield to 

green 
 Continuous stream 

of green cars 
 Overall system 

makes progress, but 
some individuals 
wait indefinitely 
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Concurrent Programming is Hard! 

 Classical problem classes of concurrent programs: 
 Races: outcome depends on arbitrary scheduling decisions 

elsewhere in the system 
 Example: who gets the last seat on the airplane? 

 Deadlock: improper resource allocation prevents forward progress 
 Example: traffic gridlock 

 Livelock / Starvation / Fairness: external events and/or system 
scheduling decisions can prevent sub-task progress 
 Example: people always jump in front of you in line 

 Many aspects of concurrent programming are beyond the 
scope of our course.. 
 but, not all  
 We’ll cover some of these aspects in the next few lectures.  
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Concurrent Programming is Hard! 

It may be hard, but … 
 
 it can be useful and sometimes necessary! 
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Client / 
Server 
Session 

Reminder: Iterative Echo Server 
Client Server 
socket socket 

bind 

listen 

rio_readlineb 

rio_writen rio_readlineb 

rio_writen 

Connection 
request 

rio_readlineb 

close 

close EOF 

Await connection 
request from 
next client 

open_listenfd 

open_clientfd 

accept connect 
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Iterative Servers 

 Iterative servers process one request at a time 

Client 1 Server 
connect 

accept 

write read 

call read 

close close 

write ret read 
read 



Carnegie Mellon 

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Iterative Servers 

 Iterative servers process one request at a time 

Client 1 Server Client 2 
connect 

accept connect 

write read 

call read 

close 

accept 

write 

read 

close Wait for server 
to finish with  
Client 1 

call read 

write 

ret read 

write ret read 
read 
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Where Does Second Client Block? 

 Second client attempts to 
connect to iterative server 

 Call to connect returns 
 Even though connection not 

yet accepted 
 Server side TCP manager 

queues request 
 Feature known as “TCP 

listen backlog” 

 Call to rio_writen returns 
 Server side TCP manager 

buffers input data 

 Call to rio_readlineb 
blocks 
 Server hasn’t written 

anything for it to read yet. 

 

Client 
socket 

rio_readlineb 

rio_writen 

Connection 
request 

open_clientfd 

connect 
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Fundamental Flaw of Iterative Servers 

 Solution: use concurrent servers instead 
 Concurrent servers use multiple concurrent flows to serve multiple 

clients at the same time 

User goes 
out to lunch 

 

Client 1 blocks 
waiting for user 
to type in data 

Client 2 blocks 
waiting to read  
from server 

Server blocks 
waiting for 
data from 

Client 1 

Client 1 Server Client 2 
connect 

accept connect 

write call read 

call read 
write 

call read 
write ret read 

call read 
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Approaches for Writing Concurrent Servers 
Allow server to handle multiple clients concurrently 
 

1. Process-based 
 Kernel automatically interleaves multiple logical flows 
 Each flow has its own private address space 

2. Event-based 
 Programmer manually interleaves multiple logical flows 
 All flows share the same address space 
 Uses technique called I/O multiplexing 

3. Thread-based 
 Kernel automatically interleaves multiple logical flows 
 Each flow shares the same address space 
 Hybrid of of process-based and event-based  
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Approach #1: Process-based Servers 
 Spawn separate process for each client 

client 1 server 

call connect call accept 

call read 

ret accept 

call fgets 
fork child 1 

User goes 
out to lunch 

 
Client 1 

blocks 
waiting for 

user to type 
in data 

call accept 

Child blocks 
waiting for 
data from 

Client 1 
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Approach #1: Process-based Servers 
 Spawn separate process for each client 

client 1 server client 2 

call connect call accept 

call read 

ret accept call connect 

call fgets 
fork child 1 

User goes 
out to lunch 

 
Client 1 

blocks 
waiting for 

user to type 
in data 

call accept 
ret accept 

call fgets 

write fork 

call  
read 

child 2 

write 

call read 

ret read 
close 

close 

... 

Child blocks 
waiting for 
data from 

Client 1 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
      
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
        echo(connfd);  
        Close(connfd);  
     } 
     exit(0); 
} 

Iterative Echo Server 

echoserverp.c 

Accept a connection request 
Handle echo requests until client terminates 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
      
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
  
  
            echo(connfd);    /* Child services client */ 
            Close(connfd);  /* child closes connection with client */ 
            exit(0); 
  
          
    } 
} 

Making a Concurrent Echo Server 

echoserverp.c 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
    Signal(SIGCHLD, sigchld_handler); 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
        if (Fork() == 0) { 
            Close(listenfd); /* Child closes its listening socket */ 
            echo(connfd);    /* Child services client */ 
            Close(connfd);   /* Child closes connection with client */ 
            exit(0);         /* Child exits */ 
        } 
        Close(connfd); /* Parent closes connected socket (important!) */ 
    } 
} 

Making a Concurrent Echo Server 

echoserverp.c 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
    Signal(SIGCHLD, sigchld_handler); 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
        if (Fork() == 0) { 
            Close(listenfd); /* Child closes its listening socket */ 
            echo(connfd);    /* Child services client */ 
            Close(connfd);   /* Child closes connection with client */ 
            exit(0);         /* Child exits */ 
        } 
        Close(connfd); /* Parent closes connected socket (important!) */ 
    } 
} 

Making a Concurrent Echo Server 

echoserverp.c 
Why? 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
    Signal(SIGCHLD, sigchld_handler); 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
        if (Fork() == 0) { 
            Close(listenfd); /* Child closes its listening socket */ 
            echo(connfd);    /* Child services client */ 
            Close(connfd);   /* Child closes connection with client */ 
            exit(0);         /* Child exits */ 
        } 
        Close(connfd); /* Parent closes connected socket (important!) */ 
    } 
} 

Making a Concurrent Echo Server 

echoserverp.c 
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int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
 
    Signal(SIGCHLD, sigchld_handler); 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
        clientlen = sizeof(struct sockaddr_storage); 
        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 
        if (Fork() == 0) { 
            Close(listenfd); /* Child closes its listening socket */ 
            echo(connfd);    /* Child services client */ 
            Close(connfd);   /* Child closes connection with client */ 
            exit(0);         /* Child exits */ 
        } 
        Close(connfd); /* Parent closes connected socket (important!) */ 
    } 
} 

Process-Based Concurrent Echo Server 

echoserverp.c 
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Process-Based Concurrent Echo Server 
(cont) 

void sigchld_handler(int sig) 
{  
    while (waitpid(-1, 0, WNOHANG) > 0) 
        ; 
    return; 
} 

 Reap all zombie children 

echoserverp.c 
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Concurrent Server: accept Illustrated 
listenfd(3) 

Client 
1. Server blocks in accept, 
waiting for connection 
request on listening 
descriptor listenfd 

clientfd 

Server 

listenfd(3) 

Client 

clientfd 

Server 
2. Client makes connection 
request by calling connect 

Connection 
request 

listenfd(3) 

Client 

clientfd 

Server 
3. Server returns connfd  from 
accept. Forks child to handle 
client.  Connection is now 
established between clientfd 
and connfd 

Server 
Child 

connfd(4) 
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Client 2 data 

Process-based Server Execution Model 

 Each client handled by independent child process 
 No shared state between them 
 Both parent & child have copies of listenfd and connfd 

 Parent must close connfd 
 Child should close listenfd  

Client 1 
server 

process 

Client 2 
server 

process 

Listening 
server 

process 

Connection requests 

Client 1 data 
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Issues with Process-based Servers 

 Listening server process must reap zombie children 
 to avoid fatal memory leak 

 Parent process must close its copy of connfd 
 Kernel keeps reference count for each socket/open file 
 After fork, refcnt(connfd) = 2 
 Connection will not be closed until refcnt(connfd) = 0 
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Pros and Cons of Process-based Servers 

 + Handle multiple connections concurrently 
 + Clean sharing model 
 descriptors (no) 
 file tables (yes) 
 global variables (no) 

 + Simple and straightforward 
 – Additional overhead for process control 
 – Nontrivial to share data between processes 
 (This example too simple to demonstrate) 
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Approach #2: Event-based Servers 

 Server maintains set of active connections 
 Array of connfd’s 

 Repeat: 
 Determine which descriptors (connfd’s or listenfd) have pending 

inputs 
 e.g., using select function 
 arrival of pending input is an event 

 If  listenfd has input, then accept connection 
 and add new connfd to array 

 Service all connfd’s with pending inputs 

 
 Details for select-based server in book 
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I/O Multiplexed Event Processing 

10 

connfd’s 

7 
4 
-1 
-1 
12 
5 
-1 
-1 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Active 

Inactive 

Active 

Never Used 

listenfd = 3  
Active Descriptors 

10 

connfd’s 

7 
4 
-1 
-1 
12 
5 
-1 
-1 
-1 

listenfd = 3  
Pending Inputs 

Read and service 

Anything 
happened? 
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Pros and Cons of Event-based Servers 

 + One logical control flow and address space. 
 + Can single-step with a debugger. 
 + No process or thread control overhead. 
 Design of choice for high-performance Web servers and search engines. 

e.g., Node.js, nginx, Tornado 
 

 – Significantly more complex to code than process- or thread-
based designs. 

 – Hard to provide fine-grained concurrency 
 E.g., how to deal with partial HTTP request headers 

 – Cannot take advantage of multi-core 
 Single thread of control 
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Break Time! 
 
 lollygag: “to waste time" 

Check out:   

Quiz: day 23: Concurrent programming 
 
https://canvas.cmu.edu/courses/3822 

https://canvas.cmu.edu/courses/3822/quizzes/9020
https://canvas.cmu.edu/courses/3822/quizzes/9020


Carnegie Mellon 

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Approach #3: Thread-based Servers 

 Very similar to approach #1 (process-based) 
  …but using threads instead of processes 
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Traditional View of a Process 

 Process = process context + code, data, and stack 

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

Code, data, and stack 

Stack 
SP 

Shared libraries 

Run-time heap 

0 

Read/write data 
Read-only code/data PC 

brk 

Process context 

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer 
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Alternate View of a Process 

 Process = thread + code, data, and kernel context 

Shared libraries 

Run-time heap 

0 

Read/write data Thread context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

 Code, data, and kernel context 

Read-only code/data 

Stack 
SP 

PC 

brk 

Thread (main thread) 

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer 
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A Process With Multiple Threads 
 Multiple threads can be associated with a process 
 Each thread has its own logical control flow  
 Each thread shares the same code, data, and kernel context 
 Each thread has its own stack for local variables  

 but not protected from other threads 
 Each thread has its own thread id (TID) 

Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1 

stack 1 

Thread 1 (main thread) 

shared libraries 

run-time heap 

0 

read/write data 

 Shared code and data 

read-only code/data 

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer 

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2 

stack 2 

Thread 2 (peer thread) 
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Logical View of Threads 

 Threads associated with process form a pool of peers 
 Unlike processes which form a tree hierarchy 

P0 

P1 

sh sh sh 

foo 

bar 

T1 

Process hierarchy Threads associated with process foo 

T2 
T4 

T5 T3 

shared code, data 
and kernel context 
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Concurrent Threads 

 Two threads are concurrent if their flows overlap in 
time 

 Otherwise, they are sequential 
 

 Examples: 
 Concurrent: A & B, A&C 
 Sequential: B & C 

 
 

Time 

Thread A Thread B Thread C 
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Concurrent Thread Execution 

 Single Core Processor 
 Simulate parallelism by 

time slicing 

 
 

 Multi-Core Processor 
 Can have true 

parallelism 

Time 

Thread A Thread B Thread C Thread A Thread B Thread C 

Run 3 threads on 2 cores 
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Threads vs. Processes 
 How threads and processes are similar 
 Each has its own logical control flow 
 Each can run concurrently with others (possibly on different cores) 
 Each is context switched 

 How threads and processes are different 
 Threads share all code and data (except local stacks) 

 Processes (typically) do not 
 Threads are somewhat less expensive than processes 

 Process control (creating and reaping) twice as expensive as thread 
control 

 Linux numbers: 
– ~20K cycles to create and reap a process 
– ~10K cycles (or less) to create and reap a thread 
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Posix Threads (Pthreads) Interface 
 Pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs 
 Creating and reaping threads 

 pthread_create() 
 pthread_join() 

 Determining your thread ID 
 pthread_self() 

 Terminating threads 
 pthread_cancel() 
 pthread_exit() 
 exit() [terminates all threads]  
 return [terminates current thread] 

 Synchronizing access to shared variables 
 pthread_mutex_init 
 pthread_mutex_[un]lock 
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void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
}  

The Pthreads "hello, world" Program 
/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
void *thread(void *vargp);                     
 
int main(int argc, char** argv) 
{ 
    pthread_t tid;                             
    Pthread_create(&tid, NULL, thread, NULL);  
    Pthread_join(tid, NULL);                   
    return 0;                                   
} 

Thread attributes  
(usually NULL) 

Thread arguments 
(void *p)  

Return value 
(void **p) 

hello.c 

Thread ID 

Thread routine 

hello.c 
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Execution of Threaded “hello, world” 
Main thread 

Peer thread 

return NULL; Main thread waits for  
peer  thread to terminate 

exit()  
Terminates  

main thread and  
any peer threads 

call Pthread_create() 

call Pthread_join() 

Pthread_join()returns 

printf() 

Peer thread 
terminates 

Pthread_create()returns 
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Thread-Based Concurrent Echo Server 
int main(int argc, char **argv) 
{ 
    int listenfd, *connfdp; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; 
    pthread_t tid; 
 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
 clientlen=sizeof(struct sockaddr_storage); 
 connfdp = Malloc(sizeof(int));  
 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);  
 Pthread_create(&tid, NULL, thread, connfdp); 
    } 
    return 0; 
} 

echoservert.c 

 Spawn new thread for each client 
 Pass it copy of connection file descriptor 
 Note use of Malloc()! [but not Free()] 
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Thread-Based Concurrent Server (cont) 

/* Thread routine */ 
void *thread(void *vargp) 
{ 
    int connfd = *((int *)vargp); 
    Pthread_detach(pthread_self());  
    Free(vargp);                     
    echo(connfd); 
    Close(connfd); 
    return NULL; 
} 

 Run thread in “detached” mode. 
 Runs independently of other threads 
 Reaped automatically (by kernel) when it terminates 

 Free storage allocated to hold connfd 
 Close connfd (important!) 

echoservert.c 
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Thread-based Server Execution Model 

 Each client handled by individual peer thread 
 Threads share all process state except TID 
 Each thread has a separate stack for local variables 

Client 1 
server  

peer 
thread 

Client 2 
server 
peer 

thread 

Listening 
server 

main thread 

Connection requests 

Client 1 data Client 2 data 
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Issues With Thread-Based Servers 

 Must run “detached” to avoid memory leak 
 At any point in time, a thread is either joinable or detached 
 Joinable thread can be reaped and killed by other threads 

 must be reaped (with pthread_join) to free memory resources 
 Detached thread cannot be reaped or killed by other threads 

 resources are automatically reaped on termination 
 Default state is joinable 

 use pthread_detach(pthread_self()) to make detached 

 Must be careful to avoid unintended sharing 
 For example, passing pointer to main thread’s stack 

 Pthread_create(&tid, NULL, thread, (void *)&connfd); 

 All functions called by a thread must be thread-safe 
 (next lecture) 
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Potential Form of Unintended Sharing 

main thread 

peer1 

    while (1) { 
 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);  
 Pthread_create(&tid, NULL, thread, &connfd); 
    } 

connfd 

Main thread stack 

vargp 

Peer1 stack 

connfd = connfd1 

 connfd = *vargp 

peer2 

connfd = connfd2 

 connfd = *vargp 

Race! 

Why would both copies of vargp point to same location? 

Peer2 stack 

vargp 
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Could this race occur? 

int i; 
for (i = 0; i < 100; i++) { 
  Pthread_create(&tid, NULL, 
                 thread, &i); 
} 

 Race Test 
 If no race, then each thread would get different value of i 
 Set of saved values would consist of one copy each of 0 through 99 

Main 
void *thread(void *vargp)  
{   
  int i = *((int *)vargp); 
  Pthread_detach(pthread_self()); 
  save_value(i); 
  return NULL; 
} 

Thread 
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Experimental Results 

 The race can really happen! 

No Race 
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Correct passing of thread arguments 
/* Main routine */ 
 int *connfdp; 
 connfdp = Malloc(sizeof(int));  
 *connfdp = Accept( . . . );  
 Pthread_create(&tid, NULL, thread, connfdp); 

 Producer-Consumer Model 
 Allocate in main 
 Free in thread routine 

 
    

/* Thread routine */ 
void *thread(void *vargp) 
{ 
    int connfd = *((int *)vargp); 
 . . . 
    Free(vargp);                     

    . . . 
    return NULL; 
} 
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Pros and Cons of Thread-Based Designs 

 + Easy to share data structures between threads 
 e.g., logging information, file cache 

 + Threads are more efficient than processes 
 

 – Unintentional sharing can introduce subtle and hard-
to-reproduce errors! 
 The ease with which data can be shared is both the greatest 

strength and the greatest weakness of threads 
 Hard to know which data shared & which private 
 Hard to detect by testing 

 Probability of bad race outcome very low 
 But nonzero! 

 Future lectures 
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Summary: Approaches to Concurrency 

 Process-based 
 Hard to share resources: Easy to avoid unintended sharing 
 High overhead in adding/removing clients 

 Event-based 
 Tedious and low level 
 Total control over scheduling 
 Very low overhead 
 Cannot create as fine grained a level of concurrency 
 Does not make use of multi-core 

 Thread-based 
 Easy to share resources: Perhaps too easy 
 Medium overhead 
 Not much control over scheduling policies 
 Difficult to debug 

 Event orderings not repeatable 
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