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Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible
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Data Race
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Deadlock
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Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch_child(int signo) {
printfF("'Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

+

int main(int argc, char** argv) { Acquire  Receive

lock signal

for (i = 0; i < 1000000; i++) { leure .. Request
if (fork() == 0) { bhewt - lock
// in child, exit immediately T v
exit(0); i
} v

// 1n parent
sprintf(buf, "Child #%d started\n', 1);
printf("'%s", buf);

+

return O;
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Testing Printf Deadlock

void catch_child(int signo) {
printf("'Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (wartpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}

int main(int argc, char** argv) {

Child #0 started
Child #1 started
Child #2 started

for (i = 0; i < 1000000; i++) {
1T (fork() == 0) {
// in child, exit immediately child #3 started

ex1t(0); Child exited!
b5 Child #4 started

// 1n parent _ _ '
sprintf(buf, "Child #%d started\n™”, i); gﬂ::g Zglzig}ted

printf("'%s", buf);
+

return O;

h Child #5888 started
Child #5889 started
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Livelock
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Livelock
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Starvation

m Yellow must yield to
green

m Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely
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Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

" Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of our course..
= but, notall ©
= We'll cover some of these aspects in the next few lectures.
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Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and sometimes necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11



Carnegie Mellon

Reminder: Iterative Echo Server

> open_listenfd

Await connection

request from

Client Server
socket socket
bind
open_clientfd < 1
listen
Connection l
request
connect  [------------- > accept
v v
Client / rio_writen »rio_readlineb
Server ! |
Session rio_readlineb |« rio_writen
v \4
EOF

close
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rio_readlineb

close

next client
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Iterative Servers

m Iterative servers process one request at a time

Client 1 Server
COnneCt ........................................ >
accept
WEIEE | read
call read| :
ret read e rnrnmrmmmremen Wr‘ite
read
ClOSe | .c.:,lose
.......... R

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect ........................................ >
accept| e connect
PRFURRSIE L
write m"m"mm"m"m"mi?fg ________________ write
call read DRNFEPRRTRRL
.............................. - amanmn Cal I I"ead
ret read [*~ write ~
read
CloSe | close Wait for server
* accept >- tO f|n|5h W|th
Client 1
read
write
............................... _/
.......... .,” I"Et read
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Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
, = Server side TCP manager
socket queues request
= Feature known as “TCP
listen backlog”
open_clientfd < m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect  [------------- > . .
\ I m Call to rio_readlineb
rio_writen > blocks
1 = Server hasn’t written
Fi (readlAn anything for it to read yet.
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Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
Connect ........................................ >
accept| e connect
write Ca||read> e write
call read DRNFEPRRTRRL
............................ sannnane Cal I I"ead
ret read [*~ write
User goes call read Client 2 blocks
out to lunch Server blocks waiting to read
waiting for from server
Client 1 blocks data from
waiting for user | Client 1} |

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
" Each flow shares the same address space
" Hybrid of of process-based and event-based
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Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connecty.... call accept
.................... > r-et accept
call fgets
g childl/ fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1
user to type
in data
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Approach #1: Process-based Servers

m Spawn separate process for each client

client 1

call connect.......

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

\ 4

server client 2

call accept
*l ret accept

child 1_— fork

call accept

call read
ret accept
Child blocks
waiting for
fork i
data from or wz
Client 1 ! call
- read
write \
close

call connect

call fgets

write

call read

ret read

A 4 A 4
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|close

19



Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_ storage clientaddr;

listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
echo(connfd) ;
Close(connfd);

by
exi1t(0);

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c
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Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[l]);
whille (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

echo(connfd) ; /* Child services client */
Close(connfd); /* child closes connection with client */
exi1t(0);

echoserverp.c
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Making a Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
listenfd = Open_listenfd(argv|[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
iIT (Fork()O == 0) {
echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
+
+
echoserverp.c
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Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[l]);

whille (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {

echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */

+

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23
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Making a Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {
Close(listenfd); /7* Child closes i1ts listening socket */
echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
Close(connfd); /* Parent closes connected socket (important!) */
+
+
echoserverp.c
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Process-Based Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
Signal (SIGCHLD, sigchld _handler);
listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {
Close(listenfd); /* Child closes i1ts listening socket */
echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
Close(connfd); /* Parent closes connected socket (important!) */
+
}
echoserverp.c
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Process-Based Concurrent Echo Server
(cont)

void sigchld _handler(int sig)

{
while (wartpid(-1, 0, WNOHANG) > 0)
return;

¥ echoserverp.c

= Reap all zombie children
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Concurrent Server: accept lllustrated

listenfd(3)
Client l T Server
clientfd
Connection listenfd(3)
request
__________________ >
Client i T Server
clientfd

listenfd(3)

®

Server

Client Server
1en ) . Child

clientfd connfd(4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Server blocks in accept,
waiting for connection
request on listening
descriptor 1 1stenftd

2. Client makes connection
request by calling connect

3. Server returns connftd from
accept. Forks child to handle
client. Connection is now
established between cl 1entfd
and connfd
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Process-based Server Execution Model

Connection requests
Listening
server
process
Client 1 data | Client1 Client2 | client 2 data
p > server server >
process process

= Each client handled by independent child process
" No shared state between them

" Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1stenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
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Issues with Process-based Servers

m Listening server process must reap zombie children
" to avoid fatal memory leak
m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
= After fork, refcnt(connfd) = 2
= Connection will not be closed until refcnt(connfd) = 0O
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Pros and Cons of Process-based Servers

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes
= (This example too simple to demonstrate)
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Approach #2: Event-based Servers

m Server maintains set of active connections
= Array of connfd’s

m Repeat:
= Determine which descriptors (connfd’s or L 1stenfd) have pending
inputs
= e.g., using select function
= arrival of pending input is an event
= |f listenfd has input, then accept connection
= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in book
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/0 Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 €
connfd’s connfd’s
0 10 | 10
1 > Active Anything 7 |
2 4
; 2 < happened?
-1 -1
> Inactive
4 -1 ) -1
> 12 - 12 |«
6 c Active . .
o
7 a1 |) -1
8 1 -1
9 -1 Never Used -1
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Pros and Cons of Event-based Servers

m + One logical control flow and address space.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

m — Significantly more complex to code than process- or thread-
based designs.

m — Hard to provide fine-grained concurrency
= E.g., how to deal with partial HTTP request headers

m — Cannot take advantage of multi-core
= Single thread of control
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Break Time!

lollygag: “to waste time"

Check out:
Quiz: day 23: Concurrent programming

https://canvas.cmu.edu/courses/3822
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Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= .but using threads instead of processes
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Traditional View of a Process
m Process = process context + code, data, and stack

e - Er_ogefs:c_opt_el(t _______ Code, data, and stack

Program context: ‘ Stack
i SP
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk Run-time heap

Read/write data
PC —> Read-only code/data

VM structures
Descriptor table
brk pointer

I
I
I
I
I
I
I
I
I
I
I Kernel context:
I
I
I
I
I
I
I
I
I
I
I
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Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack -
il brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I I
I I
I I
I I
I I
I I
I

| Data registers : PC > Read-0n|y COdE/data
I

| :
' I
' I
. |
' I
I
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A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes o
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer
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Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® @ e
' (P1)

OJOXO),
_____________________ | (oo
ear

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39
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Concurrent Threads

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
= Concurrent: A & B, A&C I
= Sequential: B&C I
Time | I """"

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by "= Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41
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Threads vs. Processes

m How threads and processes are similar
" Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different

" Threads share all code and data (except local stacks)
= Processes (typically) do not

" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread _create()
= pthread _join()
= Determining your thread ID
= pthread_selft()
"= Terminating threads
= pthread _cancel ()
= pthread _exit()
= ex1t() [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
= pthread _mutex_init
= pthread _mutex_[un]lock
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The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program

*/ .
#include "‘csapp.h" y Thread ID Tl}readﬁttlczzzes
void *thread(void *vargp); usuaily )
int main(int argc, char** gv)

{ . Thread routine
pthread t tid;
Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL); Thread arguments
return O; T (void *p)

} hello.c

void *thread(void *vargp) /* thread routine */

1
printf("'Hello, world!I\n™);

return NULL;
}

_ Return value

(void **p)

hello.c

ryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Execution of Threaded “hello, world”

Main thread

call Pthread create()
Pthread create()returns

.................... Peer thread
allPthread ioinO | e _
= O printf(Q)
Main thread waits for return NULL;
peer thread to terminate | .7 Peer thread
.............. terminates

Pthread join()returns fe

exi1t()

Terminates °
main thread and
any peer threads
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Thread-Based Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, *connfdp;
socklen_t clientlen;
struct sockaddr_ storage clientaddr;
pthread t tid;
listenfd = Open_listenfd(argv|[l]);
whille (1) {
clientlen=sizeof(struct sockaddr storage);
connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp);
+
return O; echoservert.c
+

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use of Malloc()! [but not Free()]
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Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach(pthread self());
Free(vargp);
echo(connfd) ;
Close(connfd);
return NULL;

3} echoservert.c

" Run thread in “detached” mode.
= Runs independently of other threads

= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47
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Thread-based Server Execution Model

Connection requests
Listening
server
] main thread )
) Client 1 Client 2 ]
Client 1 data S server | Client 2 data
) | peer peer | ]
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48



Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread_join) to free memory resources
" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
= use pthread _detach(pthread self()) to make detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
= (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49
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Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

main thread

connfd = connfd,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edi

tion

’\connfd = *vargp

Main thread stack

connfd

Peer, stack

o vargp

Peer, stack

® vargp

v Why would both copies of vargp point to same location?
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Could this race occur?

Main Thread
int 1; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int 1 = *((int *)vargp);

thread, &i); Pthread detach(pthread _self());
3} save value(i);
return NULL;
+
m Race Test

" |f no race, then each thread would get different value of 1

= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51



Experimental Results

No Race

0 2 4 6 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

Single core laptop

3

i

1

o L ANNERR ARRNARRR_RRRRAR NARRNARRNNARRNARD ARRNARRN RRNNARRNARRNARRNR AR R

0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

2

1
0

Multicore server
14

12

10

8

SRIE

02 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

m The race can really happen!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof(int));

*connfdp = Accept( - . . );
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp);

Free(vargp);

return NULL;

m Producer-Consumer Model

= Allocate in main
" Free in thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads

= e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

" Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54



Summary: Approaches to Concurrency

m Process-based

" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
" Total control over scheduling
= Very low overhead
" Cannot create as fine grained a level of concurrency
"= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy
" Medium overhead
" Not much control over scheduling policies
= Difficult to debug

= Event orderings not repeatable
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