Carnegie Mellon

Concurrent Programming

15-213: Introduction to Computer Systems
23" Lecture, April 12, 2018

Instructor:
Franz Franchetti and Seth C. Goldstein and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Data Race

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Deadlock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch_child(int signo) {
printfF("'Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

+

int main(int argc, char** argv) { Acquire Receive

lock signal

for (i = 0; i < 1000000; i++) { leure .. Request
if (fork() == 0) { bhewt - lock
// in child, exit immediately T v
exit(0); i
} v

// 1n parent
sprintf(buf, "Child #%d started\n', 1);
printf("'%s", buf);

+

return O;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Testing Printf Deadlock

void catch_child(int signo) {
printf("'Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (wartpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}

int main(int argc, char** argv) {

Child #0 started
Child #1 started
Child #2 started

for (i = 0; i < 1000000; i++) {
1T (fork() == 0) {
// in child, exit immediately child #3 started

ex1t(0); Child exited!
b5 Child #4 started

// 1n parent _ _ '
sprintf(buf, "Child #%d started\n™”, i); gﬂ::g Zglzig}ted

printf("'%s", buf);
+

return O;

h Child #5888 started
Child #5889 started

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Starvation

m Yellow must yield to
green

m Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

" Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of our course..
= but, notall ©
= We'll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and sometimes necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Reminder: Iterative Echo Server

> open_listenfd

Await connection

request from

Client Server
socket socket
bind
open_clientfd < 1
listen
Connection l
request
connect [------------- > accept
v v
Client / rio_writen »rio_readlineb
Server ! |
Session rio_readlineb |« rio_writen
v \4
EOF

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

rio_readlineb

close

next client

12

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server
COnneCt .. >
accept
WEIEE | read
call read| :
ret read e rnrnmrmmmremen Wr‘ite
read
ClOSe | .c.:,lose
.......... R

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect .. >
accept| e connect
PRFURRSIE L
write m"m"mm"m"m"mi?fg ________________ write
call read DRNFEPRRTRRL
.............................. - amanmn Cal I I"ead
ret read [*~ write ~
read
CloSe | close Wait for server
* accept >- tO f|n|5h W|th
Client 1
read
write
............................... _/
.......... .,” I"Et read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
, = Server side TCP manager
socket queues request
= Feature known as “TCP
listen backlog”
open_clientfd < m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect [------------- > . .
\ I m Call to rio_readlineb
rio_writen > blocks
1 = Server hasn’t written
Fi (readlAn anything for it to read yet.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
Connect .. >
accept| e connect
write Ca||read> e write
call read DRNFEPRRTRRL
............................ sannnane Cal I I"ead
ret read [*~ write
User goes call read Client 2 blocks
out to lunch Server blocks waiting to read
waiting for from server
Client 1 blocks data from
waiting for user | Client 1} |

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
" Each flow shares the same address space
" Hybrid of of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connecty.... call accept
.................... > r-et accept
call fgets
g childl/ fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1
user to type
in data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1

call connect.......

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

\ 4

server client 2

call accept
*l ret accept

child 1_— fork

call accept

call read
ret accept
Child blocks
waiting for
fork i
data from or wz
Client 1 ! call
- read
write \
close

call connect

call fgets

write

call read

ret read

A 4 A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

|close

19

Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_ storage clientaddr;

listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
echo(connfd) ;
Close(connfd);

by
exi1t(0);

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[l]);
whille (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

echo(connfd) ; /* Child services client */
Close(connfd); /* child closes connection with client */
exi1t(0);

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
listenfd = Open_listenfd(argv|[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
iIT (Fork()O == 0) {
echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
+
+
echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[l]);

whille (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {

echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */

+

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {
Close(listenfd); /7* Child closes i1ts listening socket */
echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
Close(connfd); /* Parent closes connected socket (important!) */
+
+
echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
Signal (SIGCHLD, sigchld _handler);
listenfd = Open_listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
it (Fork(O == 0) {
Close(listenfd); /* Child closes i1ts listening socket */
echo(connfd) ; /* Child services client */
Close(connfd); /* Child closes connection with client */
exi1t(0); /* Child exits */
+
Close(connfd); /* Parent closes connected socket (important!) */
+
}
echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Process-Based Concurrent Echo Server
(cont)

void sigchld _handler(int sig)

{
while (wartpid(-1, 0, WNOHANG) > 0)
return;

¥ echoserverp.c

= Reap all zombie children

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd(3)
Client l T Server
clientfd
Connection listenfd(3)
request
__________________ >
Client i T Server
clientfd

listenfd(3)

®

Server

Client Server
1en) . Child

clientfd connfd(4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Server blocks in accept,
waiting for connection
request on listening
descriptor 1 1stenftd

2. Client makes connection
request by calling connect

3. Server returns connftd from
accept. Forks child to handle
client. Connection is now
established between cl 1entfd
and connfd

27

Carnegie Mellon

Process-based Server Execution Model

Connection requests
Listening
server
process
Client 1 data | Client1 Client2 | client 2 data
p > server server >
process process

= Each client handled by independent child process
" No shared state between them

" Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1stenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Issues with Process-based Servers

m Listening server process must reap zombie children
" to avoid fatal memory leak
m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
= After fork, refcnt(connfd) = 2
= Connection will not be closed until refcnt(connfd) = 0O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Pros and Cons of Process-based Servers

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes
= (This example too simple to demonstrate)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Approach #2: Event-based Servers

m Server maintains set of active connections
= Array of connfd’s

m Repeat:
= Determine which descriptors (connfd’s or L 1stenfd) have pending
inputs
= e.g., using select function
= arrival of pending input is an event
= |f listenfd has input, then accept connection
= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in book

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

/0 Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 €
connfd’s connfd’s
0 10 | 10
1 > Active Anything 7 |
2 4
; 2 < happened?
-1 -1
> Inactive
4 -1) -1
> 12 - 12 |«
6 c Active . .
o
7 a1 |) -1
8 1 -1
9 -1 Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Pros and Cons of Event-based Servers

m + One logical control flow and address space.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

m — Significantly more complex to code than process- or thread-
based designs.

m — Hard to provide fine-grained concurrency
= E.g., how to deal with partial HTTP request headers

m — Cannot take advantage of multi-core
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Break Time!

lollygag: “to waste time"

Check out:
Quiz: day 23: Concurrent programming

https://canvas.cmu.edu/courses/3822

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

https://canvas.cmu.edu/courses/3822/quizzes/9020
https://canvas.cmu.edu/courses/3822/quizzes/9020

Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= .but using threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Traditional View of a Process
m Process = process context + code, data, and stack

e - Er_ogefs:c_opt_el(t _______ Code, data, and stack

Program context: ‘ Stack
i SP
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk Run-time heap

Read/write data
PC —> Read-only code/data

VM structures
Descriptor table
brk pointer

I
I
I
I
I
I
I
I
I
I
I Kernel context:
I
I
I
I
I
I
I
I
I
I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack -
il brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I I
I I
I I
I I
I I
I I
I

| Data registers : PC > Read-0n|y COdE/data
I

| :
' I
' I
. |
' I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes o
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® @ e
' (P1)

OJOXO),
_____________________ | (oo
ear

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

“a | shared code, data
and kernel context

Carnegie Mellon

Concurrent Threads

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
= Concurrent: A & B, A&C I
= Sequential: B&C I
Time | I """"

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by "= Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
" Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different

" Threads share all code and data (except local stacks)
= Processes (typically) do not

" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread _create()
= pthread _join()
= Determining your thread ID
= pthread_selft()
"= Terminating threads
= pthread _cancel ()
= pthread _exit()
= ex1t() [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
= pthread _mutex_init
= pthread _mutex_[un]lock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program

*/ .
#include "‘csapp.h" y Thread ID Tl}readﬁttlczzzes
void *thread(void *vargp); usuaily)
int main(int argc, char** gv)

{ . Thread routine
pthread t tid;
Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL); Thread arguments
return O; T (void *p)

} hello.c

void *thread(void *vargp) /* thread routine */

1
printf("'Hello, world!I\n™);

return NULL;
}

_ Return value

(void **p)

hello.c

ryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

44

Carnegie Mellon

Execution of Threaded “hello, world”

Main thread

call Pthread create()
Pthread create()returns

.................... Peer thread
allPthread ioinO | e _
= O printf(Q)
Main thread waits for return NULL;
peer thread to terminate | .7 Peer thread
.............. terminates

Pthread join()returns fe

exi1t()

Terminates °
main thread and
any peer threads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, *connfdp;
socklen_t clientlen;
struct sockaddr_ storage clientaddr;
pthread t tid;
listenfd = Open_listenfd(argv|[l]);
whille (1) {
clientlen=sizeof(struct sockaddr storage);
connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp);
+
return O; echoservert.c
+

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use of Malloc()! [but not Free()]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach(pthread self());
Free(vargp);
echo(connfd) ;
Close(connfd);
return NULL;

3} echoservert.c

" Run thread in “detached” mode.
= Runs independently of other threads

= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Thread-based Server Execution Model

Connection requests
Listening
server
] main thread)
) Client 1 Client 2]
Client 1 data S server | Client 2 data
) | peer peer |]
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread_join) to free memory resources
" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
= use pthread _detach(pthread self()) to make detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
= (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

main thread

connfd = connfd,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edi

tion

’\connfd = *vargp

Main thread stack

connfd

Peer, stack

o vargp

Peer, stack

® vargp

v Why would both copies of vargp point to same location?

50

Carnegie Mellon

Could this race occur?

Main Thread
int 1; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int 1 = *((int *)vargp);

thread, &i); Pthread detach(pthread _self());
3} save value(i);
return NULL;
+
m Race Test

" |f no race, then each thread would get different value of 1

= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Experimental Results

No Race

0 2 4 6 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

Single core laptop

3

i

1

o L ANNERR ARRNARRR_RRRRAR NARRNARRNNARRNARD ARRNARRN RRNNARRNARRNARRNR AR R

0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

2

1
0

Multicore server
14

12

10

8

SRIE

02 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

m The race can really happen!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

52

Carnegie Mellon

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof(int));

*connfdp = Accept(- . .);
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp);

Free(vargp);

return NULL;

m Producer-Consumer Model

= Allocate in main
" Free in thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

53

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads

= e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

" Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Summary: Approaches to Concurrency

m Process-based

" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
" Total control over scheduling
= Very low overhead
" Cannot create as fine grained a level of concurrency
"= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy
" Medium overhead
" Not much control over scheduling policies
= Difficult to debug

= Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

	Concurrent Programming��15-213: Introduction to Computer Systems�23rd Lecture, April 12, 2018
	Concurrent Programming is Hard!
	Data Race
	Deadlock
	Deadlock
	Testing Printf Deadlock
	Livelock
	Livelock
	Starvation
	Concurrent Programming is Hard!
	Concurrent Programming is Hard!
	Reminder: Iterative Echo Server
	Iterative Servers
	Iterative Servers
	Where Does Second Client Block?
	Fundamental Flaw of Iterative Servers
	Approaches for Writing Concurrent Servers
	Approach #1: Process-based Servers
	Approach #1: Process-based Servers
	Iterative Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Making a Concurrent Echo Server
	Process-Based Concurrent Echo Server
	Process-Based Concurrent Echo Server�(cont)
	Concurrent Server: accept Illustrated
	Process-based Server Execution Model
	Issues with Process-based Servers
	Pros and Cons of Process-based Servers
	Approach #2: Event-based Servers
	I/O Multiplexed Event Processing
	Pros and Cons of Event-based Servers
	Break Time!��	lollygag: “to waste time"
	Approach #3: Thread-based Servers
	Traditional View of a Process
	Alternate View of a Process
	A Process With Multiple Threads
	Logical View of Threads
	Concurrent Threads
	Concurrent Thread Execution
	Threads vs. Processes
	Posix Threads (Pthreads) Interface
	The Pthreads "hello, world" Program
	Execution of Threaded “hello, world”
	Thread-Based Concurrent Echo Server
	Thread-Based Concurrent Server (cont)
	Thread-based Server Execution Model
	Issues With Thread-Based Servers
	Potential Form of Unintended Sharing
	Could this race occur?
	Experimental Results
	Correct passing of thread arguments
	Pros and Cons of Thread-Based Designs
	Summary: Approaches to Concurrency

