
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

15-213: Introduction to Computer Systems
19th Lecture, March 29, 2018

Instructor:
Franz Franchetti, Seth Copen Goldstein, and Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Basic concepts
 Implicit free lists

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation
 Programmers use

dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
 For data structures whose

size is only known at
runtime.

 Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
 Explicit allocator: application allocates and frees space

 E.g., malloc and free in C
 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)
 Successful:

 Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)

 If size == 0, returns NULL
 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
 Returns the block pointed at by p to pool of available memory
 p must come from a previous call to malloc or realloc

Other functions
 calloc: Version of malloc that initializes allocated block to zero.
 realloc: Changes the size of a previously allocated block.
 sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simplifying Assumptions Made in This Lecture
 Memory is word addressed.
 Words are int-sized.
 Allocations are double-word aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints
 Applications
 Can issue arbitrary sequence of malloc and free requests
 free request must be to a malloc’d block

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests
 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory
 Must align blocks so they satisfy all alignment requirements

 16-byte (x86-64) alignment on Linux boxes
 Can manipulate and modify only free memory
 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time
 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds
 Throughput is 1,000 operations/second

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Peak Memory Utilization
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk
 malloc(p) results in a block with a payload of p bytes
 After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads

 Def: Current heap size Hk
 Assume Hk is monotonically nondecreasing

 i.e., heap only grows when allocator uses sbrk

 Def: Peak memory utilization after k+1 requests
 Uk = (maxi≤k Pi) / Hk

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation
 Poor memory utilization caused by fragmentation
 internal fragmentation
 external fragmentation

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation
 For a given block, internal fragmentation occurs if payload is

smaller than block size

 Caused by
 Overhead of maintaining heap data structures
 Padding for alignment purposes
 Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
 Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation
 Occurs when there is enough aggregate heap memory,

but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p4 = malloc(7*SIZ) Oops! (what would happen now?)

#define SIZ sizeof(int)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues
 How do we know how much memory to free given just a

pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reinsert freed block?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free
 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header
 Requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)

block size Payload
(aligned)

5

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
4 6 4 2

4 6 4 2

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Basic concepts
 Implicit free lists

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!
Ytse Jam: Song by Dream Theater

Check out: quiz: day 19: Malloc Basics
https://canvas.cmu.edu/courses/3822

https://canvas.cmu.edu/courses/3822

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit Free List
 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 When blocks are aligned, some low-order address bits are always 0
 Instead of storing an always-0 bit, use it as an allocated/free flag
 When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

 Search list from beginning, choose first free block that fits:

 Can take linear time in total number of blocks (allocated and free)
 In practice it can cause “splinters” at beginning of list

 Next fit:
 Like first fit, but search list starting where previous search finished
 Should often be faster than first fit: avoids re-scanning unhelpful blocks
 Some research suggests that fragmentation is worse

 Best fit:
 Search the list, choose the best free block: fits, with fewest bytes left over
 Keeps fragments small—usually improves memory utilization
 Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block
 Simplest implementation:
 Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & -2 }

 But can lead to “false fragmentation”

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space,
but the allocator won’t be able to find it

0

0

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

 But how do we coalesce with previous block?

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

0 0

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags
 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?
 What does that mean?

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks
 When sizes are multiples of 4 or more, have 2+ spare bits

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 4)

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
 Placement policy:
 First-fit, next-fit, best-fit, etc.
 Trades off lower throughput for less fragmentation
 Interesting observation: segregated free lists (next lecture)

approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
 When do we go ahead and split free blocks?
 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called
 Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
 Coalesce as you scan the free list for malloc
 Coalesce when the amount of external fragmentation reaches

some threshold

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
 Implementation: very simple
 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case
 even with coalescing

 Memory usage:
 will depend on placement policy
 First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

	Dynamic Memory Allocation: �Basic Concepts��15-213: Introduction to Computer Systems	�19th Lecture, March 29, 2018
	Today
	Dynamic Memory Allocation	
	Dynamic Memory Allocation
	The malloc Package
	malloc Example
	Simplifying Assumptions Made in This Lecture
	Allocation Example
	Constraints
	Performance Goal: Throughput
	Performance Goal: Peak Memory Utilization
	Fragmentation
	Internal Fragmentation
	External Fragmentation
	Implementation Issues
	Knowing How Much to Free
	Keeping Track of Free Blocks
	Today
	Quiz Time!�	Ytse Jam: Song by Dream Theater
	Method 1: Implicit Free List
	Detailed Implicit Free List Example
	Implicit List: Finding a Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Freeing a Block
	Implicit List: Coalescing
	Implicit List: Bidirectional Coalescing
	Constant Time Coalescing
	Constant Time Coalescing (Case 1)
	Constant Time Coalescing (Case 2)
	Constant Time Coalescing (Case 3)
	Constant Time Coalescing (Case 4)
	Disadvantages of Boundary Tags
	No Boundary Tag for Allocated Blocks
	No Boundary Tag for Allocated Blocks�(Case 1)
	No Boundary Tag for Allocated Blocks (Case 2)
	No Boundary Tag for Allocated Blocks (Case 3)
	No Boundary Tag for Allocated Blocks (Case 4)
	Summary of Key Allocator Policies
	Implicit Lists: Summary

