
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation: 
Basic Concepts

15-213: Introduction to Computer Systems
19th Lecture, March 29, 2018

Instructor:
Franz Franchetti, Seth Copen Goldstein, and Brian Railing



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Basic concepts
 Implicit free lists
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Dynamic Memory Allocation
 Programmers use 

dynamic memory 
allocators (such as 
malloc) to acquire VM 
at run time. 
 For data structures whose 

size is only known at 
runtime.

 Dynamic memory 
allocators manage an 
area of process virtual 
memory known as the 
heap. 

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap
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Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free

 Types of allocators
 Explicit allocator:  application allocates and frees space 

 E.g.,  malloc and free in C
 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Will discuss simple explicit memory allocation today
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The malloc Package
#include <stdlib.h>

void *malloc(size_t size)
 Successful:

 Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)

 If size == 0, returns NULL
 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
 Returns the block pointed at by p to pool of available memory
 p must come from a previous call to malloc or realloc

Other functions
 calloc: Version of malloc that initializes allocated block to zero. 
 realloc: Changes the size of a previously allocated block.
 sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}
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Simplifying Assumptions Made in This Lecture
 Memory is word addressed.
 Words are int-sized.
 Allocations are double-word aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word
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Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)
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Constraints
 Applications
 Can issue arbitrary sequence of malloc and free requests
 free request must be to a malloc’d block

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests
 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory
 Must align blocks so they satisfy all alignment requirements

 16-byte (x86-64) alignment on Linux boxes
 Can manipulate and modify only free memory
 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed
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Performance Goal: Throughput
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time
 Example:

 5,000  malloc calls and 5,000 free calls in 10 seconds 
 Throughput is 1,000 operations/second
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Performance Goal: Peak Memory Utilization
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk
 malloc(p) results in a block with a payload of p bytes
 After request Rk has completed, the aggregate payload Pk is the sum of 

currently allocated payloads

 Def: Current heap size Hk
 Assume Hk is monotonically nondecreasing

 i.e., heap only grows when allocator uses sbrk

 Def: Peak memory utilization after k+1 requests 
 Uk = ( maxi≤k Pi )  /  Hk
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Fragmentation
 Poor memory utilization caused by fragmentation
 internal fragmentation
 external fragmentation
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Internal Fragmentation
 For a given block, internal fragmentation occurs if payload is 

smaller than block size

 Caused by 
 Overhead of maintaining heap data structures
 Padding for alignment purposes
 Explicit policy decisions 

(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
 Thus, easy to measure

Payload Internal 
fragmentation

Block

Internal 
fragmentation
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External Fragmentation
 Occurs when there is enough aggregate heap memory, 

but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p4 = malloc(7*SIZ) Oops! (what would happen now?)

#define SIZ sizeof(int)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)
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Implementation Issues
 How do we know how much memory to free given just a 

pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many 
might fit?

 How do we reinsert freed block?
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Knowing How Much to Free
 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header
 Requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)

block size Payload
(aligned)

5
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Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
4 6 4 2

4 6 4 2
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Today
 Basic concepts
 Implicit free lists
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Quiz Time!
Ytse Jam: Song by Dream Theater

Check out: quiz: day 19: Malloc Basics
https://canvas.cmu.edu/courses/3822

https://canvas.cmu.edu/courses/3822
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Method 1: Implicit Free List
 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 When blocks are aligned, some low-order address bits are always 0
 Instead of storing an always-0 bit, use it as an allocated/free flag
 When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block  
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding
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Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

 Search list from beginning, choose first free block that fits:

 Can take linear time in total number of blocks (allocated and free)
 In practice it can cause “splinters” at beginning of list

 Next fit:
 Like first fit, but search list starting where previous search finished
 Should often be faster than first fit: avoids re-scanning unhelpful blocks
 Some research suggests that fragmentation is worse

 Best fit:
 Search the list, choose the best free block: fits, with fewest bytes left over
 Keeps fragments small—usually improves memory utilization
 Will typically run slower than first fit

p = start; 
while ((p < end) &&     \\ not passed end

((*p & 1) ||     \\ already allocated
(*p <= len)))   \\ too small 

p = p + (*p & -2);    \\ goto next block (word addressed)
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Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want 

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1;  // round up to even
int oldsize = *p & -2;                // mask out low bit
*p = newsize | 1;                     // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining
}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0
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Implicit List: Allocating in Free Block
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4 4 26

4 24

p

24

addblock(p, 4)

0

0
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Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want 

to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1;  // round up to even
int oldsize = *p & -2;                // mask out low bit
*p = newsize | 1;                     // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining
}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0



Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want 

to split the block
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}                                       //   part of block

4 4 26

4 24
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Implicit List: Freeing a Block
 Simplest implementation:
 Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & -2 }

 But can lead to “false fragmentation” 

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space, 
but the allocator won’t be able to find it

0

0
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Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

 But how do we coalesce with previous block?

void free_block(ptr p) {
*p = *p & -2;          // clear allocated flag
next = p + *p;         // find next block
if ((*next & 1) == 0)

*p = *p + *next;     // add to this block if
}                          //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0
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Implicit List: Bidirectional Coalescing 
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

0 0
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Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1
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Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0
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m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1
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m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Disadvantages of Boundary Tags
 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?
 What does that mean?
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No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block  
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks
 When sizes are multiples of 4 or more, have 2+ spare bits
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No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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No Boundary Tag for Allocated Blocks 
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks 
(Case 3)

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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No Boundary Tag for Allocated Blocks 
(Case 4)

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0
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Summary of Key Allocator Policies
 Placement policy:
 First-fit, next-fit, best-fit, etc.
 Trades off lower throughput for less fragmentation
 Interesting observation: segregated free lists (next lecture) 

approximate a best fit placement policy without having to search 
entire free list

 Splitting policy:
 When do we go ahead and split free blocks?
 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called 
 Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. Examples:
 Coalesce as you scan the free list for malloc
 Coalesce when the amount of external fragmentation reaches 

some threshold



Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
 Implementation: very simple
 Allocate cost: 
 linear time worst case

 Free cost: 
 constant time worst case
 even with coalescing

 Memory usage: 
 will depend on placement policy
 First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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