Carnegie Mellon

Machine-Level Programming V:
Advanced Topics

15-213: Introduction to Computer Systems
oth Lecture, February 13

Instructors:
Franz Franchetti, Seth Copen Goldstein, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow

" Vulnerability
® Protection

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

XS6'64 LinUX Memory LayOut not drawn to scale

O0007FFFFFFFFFFF N\
Stack

m Stack 1 > 8MB
= Runtime stack (8MB limit)
= E.g., local variables

m Heap

= Dynamically allocated as needed
= When call malloc(), calloc(), new()

m Data Shared
= Statically allocated data Libraries
= E.g., global vars, static vars, string constants

m Text /Shared Libraries t
= Executable machine instructions peap
= Read-only Data

Text

Hex Address 400000
000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

not drawn to scale

Memory Allocation Example

Stack
char big_array|[1lL<<24]; /* 16 MB */ 1
char huge array[1lL<<31]; /7* 2 GB */
int global = O;
int useless() { return O; }
int main ()
) Shared
Vol d *pl » *p2 » *p3 » *p4; Libraries
int local = 0O;
pl = malloc(lL << 28); /* 256 MB */
p2 = malloc(1lL << 8); /* 256 B */ 4
p3 = malloc(lL << 32); /* 4 GB */
p4 = malloc(lL << 8); /* 256 B */ nEEL
/* Some print statements ... */ Data
¥ Text
Where does everything go?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

not drawn to scale

x86-64 Example Addresses oooo7r

useless() 0x0000000000400590

Stack
address range ~2%7 \
Heap
local 0x00007ffed4d3be87c ¥
pl 0x00007f7262a1e010
p3 0x00007¥7162a1d010
p4 0x000000008359d120
p2 0x000000008359d010
big array 0x0000000080601060
huge_array 0Ox0000000000601060
main() 0x000000000040060c %

Heap

Data

Text

000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

not drawn to scale

Runaway Stack Example

O0007FFFFFFFFFFF
Shared
iInt recurse(int x) { Libraries
Int a[2<<15]; /* 2~17 = 128 KiB */ Stack)
printf("'x = %d. a at %p\n'', x, a);
a[0] = (2<<13)-1; 1 > 8MB
a[a[0]] = x-1;
if (a[a[0]] == 0) d
return -1;
return recurse(af[alO]]D) - 1;
+

m Functions store local dataonin [_/runavay 48
48. a at Ox7fffd43e45d0O
stack frame 47. a at Ox7FFfd43a45c0
46. a at Ox7fffd43645b0
45. a at Ox7fffd43245a0

X X X X

m Recursive functions cause deep

nesting of frames 4. a at Ox7FFFd38e4310

X = 3. a at Ox7fffd38a4300
X = 2. a at Ox7fffd3864210
Segmentation fault

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Recall: Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int 1) {
volatile struct t s;
s.d = 3.14;
s.a[1] = 1073741824 ; /* Possibly out of bounds */
return s.d;

}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14

fun(6) -> Segmentation fault

= Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Memory Referencing Bug Example

Explanation:

struct t =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-

typedef struct { fun(0)
int a[2]; fun(1)
double d; fun(2)

} struct_t; fun(3)
fun(4)

fun(6)

Critical State 6
? 5

? 4

d7 ... d4 | 3
d3 ... dO | 2
a[1] 1
af[0] 0

3.14

3.14
3.1399998664856
2.00000061035156
3.14

Segmentation fault

Location accessed by
fun(i)

Such problems are a BIG deal

m Generally called a “buffer overflow”
= when exceeding the memory size allocated for an array
m Why a big deal?
= |t’s the #1 technical cause of security vulnerabilities
= #1 overall cause is social engineering / user ignorance
m Most common form
"= Unchecked lengths on string inputs

= Particularly for bounded character arrays on the stack
= sometimes referred to as stack smashing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

String Library Code

m Implementation of Unix function gets()

/* Get string from stdin */
char *gets(char *dest)
{
Int ¢ = getchar(Q);
char *p = dest;
while (c = EOF && c '= "\n") {
*p++ = C;
c = getchar(Q);
+
*p = "\0";
return dest;
+

= No way to specify limit on number of characters to read

m Similar problems with other library functions
= strcpy, strcat: Copy strings of arbitrary length
= scanf, fscanf, sscant, when given %s conversion specification

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */ :
Jets(buf): € btw, .hO\fV big
puts(buf); is big enough?

}

void call _echo() {
echo();

}

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Buffer Overflow Disassembly

echo:
00000000004006cT <echo>:
4006c¢cf: 48 83 ec 18 sub $0x18,%rsp
4006d3: 48 89 e7 mov %rsp,%rdi
4006d6: €8 a5 ff ff ff callg 400680 <gets>
4006db: 48 89 e7 mov %rsp,%rdi
4006de: €8 3d fe ff Tf callg 400520 <puts@plt>
4006e3: 48 83 c4 18 add $0x18,%rsp
4006e7: c3 retq
call_echo:
4006e8: 48 83 ec 08 sub $0x8,%rsp
4006ec: b8 00 00 00 OO mov $0x0, %eax
4006f1l: €8 d9 ff ff ff callg 4006cfT <echo>
4006f6: 48 83 c4 08 add $0x8,%rsp
4006fa: c3 retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Buffer Overflow Stack

Before call to gets

Stack Frame
forcall _echo

/* Echo Line */

Return Address void echo()
(8 bytes) {
char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

20 bytes unused 1

[SHIEZNEINI0]] buf «——%rsp

echo:
subqg $24, %rsp
movqg %rsp, %rdi
call gets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Buffer Overflow Stack Example

Before call to gets

void echo() echo:
Stack Frame { subg $24, %rsp

forcall_echo char buf[4]; movg %rsp, %rdi

gets(buf); call gets
00|00 |00]|00 ¥
00|40]|06 | f6

call_echo:

20 bytes unused 4006Ff1: callg 4006cf <echo>

4006f6: add $0x8, %rsp
[BI21[1HIO]| buf «—%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Buffer Overflow Stack Example #1

After call to gets

void echo() echo:

Stack Frame { subq $24, %rsp

forcall_echo char buf[4]; movq %rsp, %rdi
gets(buf); call gets

00|00}|00]00 }
00|40]|06| f6
0032131130 call_echo:
39138|37|36 L
35]34]33)]32 4006f1: callg 4006cf <echo>
31|30|39]38 4006f6: add $0x8, %rsp
3713613534 -
33|32|31|30| buf «——%rsp

unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

“01234567890123456789012\0""

Overflowed buffer, but did not corrupt state

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Buffer Overflow Stack Example #2

After call to gets

void echo() echo:

Stack Frame { subq $24, %rsp

forcall_echo char buf[4]; movq %rsp, %rdi
gets(buf); call gets

00100|00]|00 +
00|40]00]|34
35]352131(30 call_echo:
39]38[37]36 -
353413332 4006F1: callq 4006¢cf <echo>
31|30]|39|38 4006f6: add $0x8,%rsp
3713613534 ;
33|32|31|30| buf «—%rsp

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

“0123456789012345678901234\0”

Overflowed buffer and corrupted return pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Stack Smashing Attacks

void PO{ Stack after call to gets()
Q0; return N
- - - <+—— address

} A P stack frame

int QO { f
char buf[64]; Fla>s

gets(buf); <

}é{:u mn ...: data written <
} by gets() pad

void SO{ > Q stack frame

/* Something \
unexpected */

,

m Overwrite normal return address A with address of some other code S
m When Q executes ret, will jump to other code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Crafting Smashing String

int echo() {
Stack Frame char buf[4];
forcall _echo gets(buf);
00|00|00]00
00148183180 return ...;
00]100}|00]|00 }
0014008 |83 %—%rsp Target Code
void smash() {
printf(*""1"ve been smashed!\n'");
> 24 bytes ex1t(0);
ks
J 00000000004008a3 <smash>:
4008a3: 48 83 ec 08
Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
a3 08 40 00 OO0 OO 00 OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Smashing String Effect

Stack Frame
forcall echo

00100} 00|00
00148]83|80

(1oo|oo|oofoo
0014008 |a3 —%rsp Target Code
33132131150 void smash() {
< S| 18] [[printf(""1"ve been smashed!\n");
35[34]33][32 exit(0):
31130139138 1
3713613534
L 183]32[31]30 00000000004008a3 <smash>:
4008a3: 48 83 ec 08
Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
a3 08 40 00 OO0 OO 00 OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Code Injection Attacks

void PO{
Q0;
. .

return

<+<—— address

A

int QO {
char buf[64];

gets(buf);

return ..._;

}

data written
by gets()

<

B —»

Stack after call to gets()

pad

exploit
code

\

>

J

P stack frame

> Q stack frame

m Input string contains byte representation of executable code
m Overwrite return address A with address of buffer B
m When Q executes ret, will jump to exploit code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

23

How Does The Attack Code Execute?

rip —{ Stack
rsp —
void P(){ rsp > B
Q0:; I
} pad
ret ret fp ’ exploit
int Q0 { Shared , | code
char buf[64]; Libraries "N
gets(buf); // A->B
return ..._;
} Heap

Data
Fip =3 Text

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

What To Do About Buffer Overflow Attacks

m Avoid overflow vulnerabilities
m Employ system-level protections

m Have compiler use “stack canaries”

m Lets talk about each...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

1. Avoid Overflow Vulnerabilities in Code (!)

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets(buf, 4, stdin);
puts(buf);

by

m For example, use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
= Don’t use scant with %s conversion specification

= Use Fgets to read the string
= Oruse %ns where nis a suitable integer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

2. System-Level Protections can help

m Randomized stack offsets Stack base
p
= At start of program, allocate
random amount of space on
Random
stack)
allocation
m Shifts stack addresses for entire
program L :
= Makes it difficult for hacker to main
predict beginning of inserted Application
code Code
= E.g.: 5 executions of memory
allocation code B?
local Ox7ffedd3be87c Ox7iif75adf9fc Ox7ffeadb7c80c Ox7ffeaea2fdac Ox7ffcd452017c pad
= Stack repositioned each time exploit
program executes - e

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

2. System-Level Protections can help

Stack after call to gets()

m Nonexecutable code
segments

" |n traditional x86, can mark
region of memory as either

“read-only” or “writeable” ar
= Can execute anything
readable data written < pad
" x86-64 added explicit by gets()
“execute” permission exploit
= Stack marked as non- B —\o | COdeE
executable

Any attempt to execute this code will fail

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

\

P stack frame

>

> Q stack frame

28

3. Stack Canaries can help

m ldea
= Place special value (“canary”) on stack just beyond buffer
® Check for corruption before exiting function

m GCC Implementation
= —fstack-protector
= Now the default (disabled earlier)

unix>./bufdemo-sp
Type a string:0123456
0123456

unix>./bufdemo-sp
Type a string:01234567
*** gstack smashing detected ***

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Protected Buffer Disassembly

echo:

40072f: sub $0x18,%rsp

400733: mov %Fs:0x28,%rax
40073c: mov %rax,0x8(%rsp)
400741: Xxor Y%eax,%eax

400743: mov %rsp,%rdi

400746: callg 4006e0 <gets>
40074b: mov %rsp,%rdi

40074e: callg 400570 <puts@plt>
400753: mov Ox8(%rsp) ,%rax
400758: xor %Fs:0x28,%rax
400761: jJe 400768 <echo+0x39>
400763: callg 400580 < stack chk farl@gplt>
400768: add $0x18,%rsp

40076¢c: retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Setting Up Canary

Before call to gets

/* Echo Line */

Stack Frame void echo()
forcall _echo {
char buf[4]; /* Way too small! */
gets(buf);
Return Address puts(but);
(8 bytes) 3
Canary
(8 bytes)

[SHIZN[11I0]] buf «—%rsp

echo:
mov(q %fs:40, %rax # Get canary
movq %rax, 8(%rsp) # Place on stack

xorl Y%eax, %eax # Erase canary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Checking Canary

After call to gets
/* Echo Line */
void echo
Stack Frame { O
formain char buf[4]; /* Way too smalll */
gets(buf);
Return Address puts(buf);
(8 bytes) ¥
Canary Input: 0123456
(8 bytes)
00|36]135]|34
33|32|31|30| buf «——%rsp
echo:
movq 8(%rsp), %rax # Retrieve from stack
Xorq %fs:40, %rax # Compare to canary
je -L6 # 1T same, OK
call __stack _chk_fail # FAIL

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Break Time!
argle-bargle: "copious but meaningless
talk or writing"

Check out:

https://canvas.cmu.edu/courses/3822

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

https://canvas.cmu.edu/courses/3822

Carnegie Mellon

Return-Oriented Programming Attacks

m Challenge (for hackers)

= Stack randomization makes it hard to predict buffer location
= Marking stack nonexecutable makes it hard to insert binary code

m Alternative Strategy
= Use existing code
= E.g., library code from stdlib
= String together fragments to achieve overall desired outcome
= Does not overcome stack canaries

m Construct program from gadgets
= Sequence of instructions ending in ret
= Encoded by single byte OXc3

® Code positions fixed from run to run
= Code is executable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Gadget Example #1

long ab plus _c
(long a, long b, long ©)
{

}

return a*b + c;

00000000004004d0 <ab_plus_c>:
4004d0: 48 Of af fe 1mul %rsi,%rdi
4004d4: | 48 8d 04 17 | lea (%rdi,%rdx,1),%rax
4004d8: | c3 retq

\ rax € rdi + rdx

Gadget address = 0x4004d4

m Use tail end of existing functions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Gadget Example #2

void setval(unsigned *p) {
*p = 3347663060u;

}

/ Encodes movg %rax, %rdi

<setval>:
4004d9: c7 07 d4]48 89 c7| movl $0xc78948d4, (%rdi)
4004df: retq

\ rdi € rax

Gadget address = 0x4004dc

m Repurpose byte codes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

ROP Execution

Stack
/) Gadget n code .
el
—p Gadget 2 code
— |
%rsp =———> |
\> Gadget 1 code .

m Trigger with ret instruction
= Will start executing Gadget 1

m Final retin each gadget will start next one

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Crafting an ROB Attack String

Stack Frame Gadget ¢ rax € rdi + rdx
forcall_echo 00000000004004d0 <ab_plus/c>:
00]100]00|00 4004d0: 48 Of af fe mul %rsi,%rdi
00148183180 4004d4:]1 48 8d 04 17 | lea (%rdi,%rdx,1),%rax

(0o loolooloo 4004d8: | c3 retq
0014006 | f6 «—%rsp Attack: int echo() returns rdi + rdx
33132}1311|30 -
39[38|37|36 int echo() {

X =113 char buf[4]:

31303938 RS DU)E
37[36]35]34 return .. .-
\ 3313213130 | bufF 1

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
d4 04 40 00 00 OO0 OO 0O

Multiple gadgets will corrupt stack upwards

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow

" Vulnerability
® Protection

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i1[2];
double v; 1[0] 1[1]
} *up; v

struct S1 { up+0 up+4 up+8
char c;
int 1[2];
double v;
} *sp;

C 1]O] 1[1] \Y}
sp+0 sp+4 sSp+8 sp+16 sp+24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Using Union to Access Bit Patterns

typedef union {
float T;
unsigned uj;

} bit float t;

Tloat bit2float(unsigned u)

{
bit float t arg;
arg.u = u;
return arg.fT;

}

unsigned fTloat2bit(float T)

{
bit float t arg;
arg.f = T;
return arg.u;

}

Sameas (float) u?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Same as (unsigned) f?

Carnegie Mellon

41

Carnegie Mellon

Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which byte is most (least) significant?
= Can cause problems when exchanging binary data between machines
m Big Endian
= Most significant byte has lowest address
® Sparc, Internet

m Little Endian
= |Least significant byte has lowest address
= |ntel x86, ARM Android and 10S

m Bi Endian

= Can be configured either way
= ARM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Byte Ordering Example

union_{
322:8223 gﬂi:tcgﬁ]’; How are the bytes inside
unsigned int i[2]; short/int/long stored?
unsigned long I[1];
} dw;
Memory addresses growing >
32-bit | c[01 | c[1] | c[2] | c[3] | c[4] |cl5] |cl6]l | cl/]
s[O] s[1] s[2] s[3]
i[0] i[1]
1[0]
64-bit | cL[01 | c[1] | c[2] | c[3]1|c[4]|cl5] |cl6]l|cl/]
s[O] s[1] s[2] s[3]
i[0] i[1]

1[0]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Byte Ordering Example (Cont).

int j;
for = 0; J < 8; J++)
dw.c[j] = OxfO + j;

printf(’'Characters 0-7 ==

[Ox%x , Ox%x , 0x%X , Ox%X , 0Xx%X , Ox%X , 0X%x , Ox%x]J\n"",
dw.c[O0], dw.c[1], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("'Shorts 0-3 == [0x%X,0x%x,0x%x,0x%x]J\n"",
dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("lnts 0-1 == [OX%X,OX%X]\n",
dw.i[0], dw.i[1]);

printf("'Long 0 == [Ox%Ix]\n"",
dw.1[0]);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Byte Ordering on 1A32

Little Endian
110 Tl 2 T3 T4 5 6 7
c[O] | c[1] |cl2] |cl3] |cl[4] |cl5] |cl6] |cl7]
s[0] s[1] s[2] s[3]
1[0] 1[1]
1[0]
LSB MSB LSB MSB
A Print
Output:
Characters 0-7 == [Oxf0,0xf1l,0xf2,0xf3,0xF4,0xf5,0xF6,0xF7]
Shorts 0-3 == [OxFf1f0,0xF3F2,0xF5F4,0xF716]
Ints 0-1 == [OxF3F2f1f0,0xF7T6f5f4]

Long

o)

== [OxF3F2F1FO0]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

45

Byte Ordering on Sun

Big Endian

O

Tl

2

3

T4

5

T6

7

c[O]

c[1]

cl[2]

c[3]

c[4]

c[5]

c[6]

cl/]

s[O]

s[1]

s[2]

s[3]

i[0]
1[0]

i[1]

MSB LSB MSB LSB

Print

Output on Sun:

Characters 0-7 == [Oxf0,0xf1l,0xf2,0xf3,0xf4,0xf5,0xF6,0xF7]
Shorts 0-3 == [OxFfOf1l,0xF2F3,0xF4F5,0xTF6TF7]

Ints 0-1 == [OxFOF1F2f3,0xFA4F5f6f7]

Long 0] == [OxFOF1f2f3]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Byte Ordering on x86-64

Little Endian

O

Tl

2

3

T4

5

T6

7

c[O]

c[1]

cl[2]

c[3]

c[4]

c[5]

c[6]

cl/]

s[O]

s[1]

s[2]

s[3]

i[0]

i[1]

110]

LSB

MSB

Print

Output on x86-64.

Characters 0-7 [OXFO,0xF1l,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7]
Shorts 0-3 == [OxF1f0,0xF3f2,0xF5Ff4,0xF7T6]

Ints 0-1 [OXT3T2F1LT0,0xF7T6F5F4]

Long 0 == [OxTF7T6f5f4Ff3T2F110]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Summary of Compound Types in C

m Arrays
= Contiguous allocation of memory
= Aligned to satisfy every element’s alignment requirement
= Pointer to first element
®= No bounds checking

m Structures
= Allocate bytes in order declared
= Pad in middle and at end to satisfy alignment

m Unions
= Qverlay declarations
= Way to circumvent type system

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Summary

m Memory Layout

m Buffer Overflow
= Vulnerability
" Protection
= Code Injection Attack
= Return Oriented Programming

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Exploits Based on Buffer Overflows

m Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines

m Distressingly common in real programs
" Programmers keep making the same mistakes ®
= Recent measures make these attacks much more difficult

m Examples across the decades
Original “Internet worm” (1988)
“IM wars” (1999)

Twilight hack on Wii (2000s)

= ..and many, many more

m You will learn some of the tricks in attacklab

= Hopefully to convince you to never leave such holes in your programs!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Example: the original Internet worm (1988)

m Exploited a few vulnerabilities to spread

= Early versions of the finger server (fingerd) used gets() to read the
argument sent by the client:

= finger droh@cs.cmu.edu
= Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address™

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

m Once on a machine, scanned for other machines to attack
" invaded ~6000 computers in hours (10% of the Internet ©)
= see June 1989 article in Comm. of the ACM
= the young author of the worm was prosecuted...
= and CERT was formed... still homed at CMU

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example 2: IM War

m July, 1999

= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

IM War (cont.)

m August 1999

= Mysteriously, Messenger clients can no longer access AIM servers

" Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes
= At |least 13 such skirmishes

= What was really happening?
= AOL had discovered a buffer overflow bug in their own AIM clients

= They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

= When Microsoft changed code to match signature, AOL changed
signature location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because | have discovered something that 1 think you
might find interesting because you are an Internet security expert with

experience in this area. 1 have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had 1ts share.
But AOL is now *exploiting their own buffer overrun bug* to help in

iIts efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL"s
friendly exterior they are nefariously compromising peoples®™ security.

Sincerely,

Phil Bucking It was later determined that this
Founder, Bucking Consulting email originated from within
philbucking@yahoo.com .

Microsoft!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Aside: Worms and Viruses

m Worm: A program that
= Canrun by itself
= Can propagate a fully working version of itself to other computers

m Virus: Code that

= Adds itself to other programs
= Does not run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

	Machine-Level Programming V:�Advanced Topics��15-213: Introduction to Computer Systems�9th Lecture, February 13
	Today
	x86-64 Linux Memory Layout
	Memory Allocation Example
	x86-64 Example Addresses
	Runaway Stack Example
	Today
	Recall: Memory Referencing Bug Example
	Memory Referencing Bug Example
	Such problems are a BIG deal
	String Library Code
	Vulnerable Buffer Code
	Buffer Overflow Disassembly
	Buffer Overflow Stack
	Buffer Overflow Stack Example
	Buffer Overflow Stack Example #1
	Buffer Overflow Stack Example #2
	Stack Smashing Attacks
	Crafting Smashing String
	Smashing String Effect
	Code Injection Attacks
	How Does The Attack Code Execute?
	What To Do About Buffer Overflow Attacks
	1. Avoid Overflow Vulnerabilities in Code (!)
	2. System-Level Protections can help
	2. System-Level Protections can help
	3. Stack Canaries can help
	Protected Buffer Disassembly
	Setting Up Canary
	Checking Canary
	Slide Number 33
	Return-Oriented Programming Attacks
	Gadget Example #1
	Gadget Example #2
	ROP Execution
	Crafting an ROB Attack String
	Today
	Union Allocation
	Using Union to Access Bit Patterns
	Byte Ordering Revisited
	Byte Ordering Example
	Byte Ordering Example (Cont).
	Byte Ordering on IA32
	Byte Ordering on Sun
	Byte Ordering on x86-64
	Summary of Compound Types in C
	Summary
	Exploits Based on Buffer Overflows
	Example: the original Internet worm (1988)
	Example 2: IM War
	IM War (cont.)
	Slide Number 54
	Aside: Worms and Viruses

