
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming V:
Advanced Topics

15-213: Introduction to Computer Systems
9th Lecture, February 13

Instructors:
Franz Franchetti, Seth Copen Goldstein, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout
 Buffer Overflow
 Vulnerability
 Protection

 Unions

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Linux Memory Layout

 Stack
 Runtime stack (8MB limit)
 E. g., local variables

 Heap
 Dynamically allocated as needed
 When call malloc(), calloc(), new()

 Data
 Statically allocated data
 E.g., global vars, static vars, string constants

 Text / Shared Libraries
 Executable machine instructions
 Read-only

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text
Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Allocation Example

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

not drawn to scale

Where does everything go?

Stack

Text
Data

Heap

Shared
Libraries

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Example Addresses

local 0x00007ffe4d3be87c
p1 0x00007f7262a1e010
p3 0x00007f7162a1d010
p4 0x000000008359d120
p2 0x000000008359d010
big_array 0x0000000080601060
huge_array 0x0000000000601060
main() 0x000000000040060c
useless() 0x0000000000400590

address range ~247

00007F

000000

Text
Data

Heap

not drawn to scale

Heap

Stack

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Runaway Stack Example

 Functions store local data on in
stack frame

 Recursive functions cause deep
nesting of frames

int recurse(int x) {
 int a[2<<15]; /* 2~17 = 128 KiB */
 printf("x = %d. a at %p\n", x, a);
 a[0] = (2<<13)-1;
 a[a[0]] = x-1;
 if (a[a[0]] == 0)
 return -1;
 return recurse(a[a[0]]) - 1;
}

not drawn to scale

00007FFFFFFFFFFF

Stack

Shared
Libraries

8MB

./runaway 48
x = 48. a at 0x7fffd43e45d0
x = 47. a at 0x7fffd43a45c0
x = 46. a at 0x7fffd43645b0
x = 45. a at 0x7fffd43245a0
. . .
x = 4. a at 0x7fffd38e4310
x = 3. a at 0x7fffd38a4300
x = 2. a at 0x7fffd38642f0
Segmentation fault

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout
 Buffer Overflow
 Vulnerability
 Protection

 Unions

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Memory Referencing Bug Example

 Result is system specific

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example
typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault

Location accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Such problems are a BIG deal

 Generally called a “buffer overflow”
 when exceeding the memory size allocated for an array

 Why a big deal?
 It’s the #1 technical cause of security vulnerabilities

 #1 overall cause is social engineering / user ignorance

 Most common form
 Unchecked lengths on string inputs
 Particularly for bounded character arrays on the stack

 sometimes referred to as stack smashing

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

String Library Code
 Implementation of Unix function gets()

 No way to specify limit on number of characters to read

 Similar problems with other library functions
 strcpy, strcat: Copy strings of arbitrary length
 scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getchar();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Vulnerable Buffer Code

void call_echo() {
 echo();
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

btw, how big
 is big enough?

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Disassembly

 00000000004006cf <echo>:
 4006cf: 48 83 ec 18 sub $0x18,%rsp
 4006d3: 48 89 e7 mov %rsp,%rdi
 4006d6: e8 a5 ff ff ff callq 400680 <gets>
 4006db: 48 89 e7 mov %rsp,%rdi
 4006de: e8 3d fe ff ff callq 400520 <puts@plt>
 4006e3: 48 83 c4 18 add $0x18,%rsp
 4006e7: c3 retq

 4006e8: 48 83 ec 08 sub $0x8,%rsp
 4006ec: b8 00 00 00 00 mov $0x0,%eax
 4006f1: e8 d9 ff ff ff callq 4006cf <echo>
 4006f6: 48 83 c4 08 add $0x8,%rsp
 4006fa: c3 retq

call_echo:

echo:

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3] [2] [1] [0] buf

Before call to gets

20 bytes unused

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
} Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

[3] [2] [1] [0] buf

Before call to gets

20 bytes unused
 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6
00 00 00 00

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #1
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
} Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6
00 00 00 00

unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
00 32 31 30

Overflowed buffer, but did not corrupt state

“01234567890123456789012\0”

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #2
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
} Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

Overflowed buffer and corrupted return pointer

00 40 00 34

“0123456789012345678901234\0”

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Smashing Attacks

 Overwrite normal return address A with address of some other code S
 When Q executes ret, will jump to other code

int Q() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void P(){
 Q();
 ...
}

return
address
A

Stack after call to gets()

A B

P stack frame

Q stack frame

data written
by gets() pad

A A  S

void S(){
/* Something
 unexpected */
 ...
}

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crafting Smashing String
Stack Frame

for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
a3 08 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00
00 48 83 80

%rsp

00000000004008a3 <smash>:
 4008a3: 48 83 ec 08

Target Code

int echo() {
 char buf[4];
 gets(buf);
 ...
 return ...;
}

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30
FF FF AB 80 00 40 08 83
00 00 00 00

void smash() {
 printf("I've been smashed!\n");
 exit(0);
}

24 bytes

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Smashing String Effect
Stack Frame

for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
a3 08 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00
00 48 83 80

%rsp

00000000004008a3 <smash>:
 4008a3: 48 83 ec 08

Target Code

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30
FF FF AB 80 00 40 08 a3
00 00 00 00

void smash() {
 printf("I've been smashed!\n");
 exit(0);
}

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Injection Attacks

 Input string contains byte representation of executable code
 Overwrite return address A with address of buffer B
 When Q executes ret, will jump to exploit code

int Q() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void P(){
 Q();
 ...
}

return
address
A

Stack after call to gets()

A B

P stack frame

Q stack frame

B

exploit
code

data written
by gets()

pad

A B

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Does The Attack Code Execute?
Stack

Text
Data

Heap

Shared
Libraries

int Q() {
 char buf[64];
 gets(buf); // A->B
 ...
 return ...;
}

void P(){
 Q();
 ...
}

A B

 exploit
code

pad

A B

…

rip

rip

rip

rip

rsp

rsp

ret ret

rip

rsp

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What To Do About Buffer Overflow Attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Avoid Overflow Vulnerabilities in Code (!)

 For example, use library routines that limit string lengths
 fgets instead of gets
 strncpy instead of strcpy
 Don’t use scanf with %s conversion specification

 Use fgets to read the string
 Or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help
 Randomized stack offsets
 At start of program, allocate

random amount of space on
stack

 Shifts stack addresses for entire
program

 Makes it difficult for hacker to
predict beginning of inserted
code

 E.g.: 5 executions of memory
allocation code

 Stack repositioned each time

program executes

main

Application
Code

Random
allocation

Stack base

B?

B?

exploit
code

pad

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help
 Nonexecutable code

segments
 In traditional x86, can mark

region of memory as either
“read-only” or “writeable”
 Can execute anything

readable
 x86-64 added explicit

“execute” permission
 Stack marked as non-

executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

pad data written
by gets()

Any attempt to execute this code will fail

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3. Stack Canaries can help
 Idea
 Place special value (“canary”) on stack just beyond buffer
 Check for corruption before exiting function

 GCC Implementation
 -fstack-protector
 Now the default (disabled earlier)

unix>./bufdemo-sp
Type a string:0123456
0123456

unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Protected Buffer Disassembly

 40072f: sub $0x18,%rsp
 400733: mov %fs:0x28,%rax
 40073c: mov %rax,0x8(%rsp)
 400741: xor %eax,%eax
 400743: mov %rsp,%rdi
 400746: callq 4006e0 <gets>
 40074b: mov %rsp,%rdi
 40074e: callq 400570 <puts@plt>
 400753: mov 0x8(%rsp),%rax
 400758: xor %fs:0x28,%rax
 400761: je 400768 <echo+0x39>
 400763: callq 400580 <__stack_chk_fail@plt>
 400768: add $0x18,%rsp
 40076c: retq

echo:

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Setting Up Canary

echo:
 . . .
 movq %fs:40, %rax # Get canary
 movq %rax, 8(%rsp) # Place on stack
 xorl %eax, %eax # Erase canary
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3] [2] [1] [0] buf

Before call to gets

20 bytes unused Canary
(8 bytes)

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checking Canary

echo:
 . . .
 movq 8(%rsp), %rax # Retrieve from stack
 xorq %fs:40, %rax # Compare to canary
 je .L6 # If same, OK
 call __stack_chk_fail # FAIL

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
} Return Address

Saved %ebp

Stack Frame
for main

[3] [2] [1] [0]

Saved %ebx

Canary

Return Address
(8 bytes)

%rsp 33 32 31 30 buf

After call to gets

20 bytes unused Canary
(8 bytes)

00 36 35 34

Input: 0123456

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Check out:

https://canvas.cmu.edu/courses/3822

Break Time!
argle-bargle: "copious but meaningless
 talk or writing"

https://canvas.cmu.edu/courses/3822

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return-Oriented Programming Attacks
 Challenge (for hackers)
 Stack randomization makes it hard to predict buffer location
 Marking stack nonexecutable makes it hard to insert binary code

 Alternative Strategy
 Use existing code

 E.g., library code from stdlib
 String together fragments to achieve overall desired outcome
 Does not overcome stack canaries

 Construct program from gadgets
 Sequence of instructions ending in ret

 Encoded by single byte 0xc3
 Code positions fixed from run to run
 Code is executable

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #1

 Use tail end of existing functions

long ab_plus_c
 (long a, long b, long c)
{
 return a*b + c;
}

00000000004004d0 <ab_plus_c>:
 4004d0: 48 0f af fe imul %rsi,%rdi
 4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax
 4004d8: c3 retq

rax  rdi + rdx
Gadget address = 0x4004d4

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #2

 Repurpose byte codes

void setval(unsigned *p) {
 *p = 3347663060u;
}

<setval>:
 4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
 4004df: c3 retq

rdi  rax
Gadget address = 0x4004dc

Encodes movq %rax, %rdi

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Execution

 Trigger with ret instruction
 Will start executing Gadget 1

 Final ret in each gadget will start next one





c3 Gadget 1 code

c3 Gadget 2 code

c3 Gadget n code
Stack

%rsp

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crafting an ROB Attack String
Stack Frame

for call_echo

buf

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
d4 04 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00
00 48 83 80

%rsp

Gadget

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 00 00

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30
00 40 04 d4 Attack: int echo() returns rdi + rdx

00000000004004d0 <ab_plus_c>:
 4004d0: 48 0f af fe imul %rsi,%rdi
 4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax
 4004d8: c3 retq

rax  rdi + rdx

int echo() {
 char buf[4];
 gets(buf);
 ...
 return ...;
}

00 40 06 f6
00 00 00 00

Multiple gadgets will corrupt stack upwards

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout
 Buffer Overflow
 Vulnerability
 Protection

 Unions

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Union Allocation
 Allocate according to largest element
 Can only use one field at a time

union U1 {
 char c;
 int i[2];
 double v;
} *up;

struct S1 {
 char c;
 int i[2];
 double v;
} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

typedef union {
 float f;
 unsigned u;
} bit_float_t;

float bit2float(unsigned u)
{
 bit_float_t arg;
 arg.u = u;
 return arg.f;
}

unsigned float2bit(float f)
{
 bit_float_t arg;
 arg.f = f;
 return arg.u;
}

Using Union to Access Bit Patterns

Same as (float) u ? Same as (unsigned) f ?

u

f

0 4

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Revisited

 Idea
 Short/long/quad words stored in memory as 2/4/8 consecutive bytes
 Which byte is most (least) significant?
 Can cause problems when exchanging binary data between machines

 Big Endian
 Most significant byte has lowest address
 Sparc, Internet

 Little Endian
 Least significant byte has lowest address
 Intel x86, ARM Android and IOS

 Bi Endian
 Can be configured either way
 ARM

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
 union {
 unsigned char c[8];
 unsigned short s[4];
 unsigned int i[2];
 unsigned long l[1];
 } dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

32-bit

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

64-bit

How are the bytes inside
short/int/long stored?

Memory addresses growing

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example (Cont).
int j;
for (j = 0; j < 8; j++)
 dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==
[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
 dw.c[0], dw.c[1], dw.c[2], dw.c[3],
 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",
 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",
 dw.l[0]);

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on IA32

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf3f2f1f0]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
LSB MSB LSB MSB

Print

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on Sun

Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long 0 == [0xf0f1f2f3]

Output on Sun:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
MSB LSB MSB LSB

Print

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on x86-64
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on x86-64:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
LSB MSB

Print

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Compound Types in C
 Arrays
 Contiguous allocation of memory
 Aligned to satisfy every element’s alignment requirement
 Pointer to first element
 No bounds checking

 Structures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

 Unions
 Overlay declarations
 Way to circumvent type system

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Memory Layout
 Buffer Overflow
 Vulnerability
 Protection
 Code Injection Attack
 Return Oriented Programming

 Unions

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploits Based on Buffer Overflows

 Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines

 Distressingly common in real programs
 Programmers keep making the same mistakes 
 Recent measures make these attacks much more difficult

 Examples across the decades
 Original “Internet worm” (1988)
 “IM wars” (1999)
 Twilight hack on Wii (2000s)
 … and many, many more

 You will learn some of the tricks in attacklab
 Hopefully to convince you to never leave such holes in your programs!!

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: the original Internet worm (1988)

 Exploited a few vulnerabilities to spread
 Early versions of the finger server (fingerd) used gets() to read the

argument sent by the client:
 finger droh@cs.cmu.edu

 Worm attacked fingerd server by sending phony argument:
 finger “exploit-code padding new-return-
address”

 exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

 Once on a machine, scanned for other machines to attack
 invaded ~6000 computers in hours (10% of the Internet )

 see June 1989 article in Comm. of the ACM
 the young author of the worm was prosecuted…
 and CERT was formed… still homed at CMU

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 2: IM War
 July, 1999
 Microsoft launches MSN Messenger (instant messaging system).
 Messenger clients can access popular AOL Instant Messaging Service

(AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IM War (cont.)
 August 1999
 Mysteriously, Messenger clients can no longer access AIM servers
 Microsoft and AOL begin the IM war:

 AOL changes server to disallow Messenger clients
 Microsoft makes changes to clients to defeat AOL changes
 At least 13 such skirmishes

 What was really happening?
 AOL had discovered a buffer overflow bug in their own AIM clients
 They exploited it to detect and block Microsoft: the exploit code

returned a 4-byte signature (the bytes at some location in the AIM
client) to server

 When Microsoft changed code to match signature, AOL changed
signature location

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.
...
It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.
....
Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com

It was later determined that this
email originated from within
Microsoft!

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Worms and Viruses

 Worm: A program that
 Can run by itself
 Can propagate a fully working version of itself to other computers

 Virus: Code that
 Adds itself to other programs
 Does not run independently

 Both are (usually) designed to spread among computers
and to wreak havoc

	Machine-Level Programming V:�Advanced Topics��15-213: Introduction to Computer Systems�9th Lecture, February 13
	Today
	x86-64 Linux Memory Layout
	Memory Allocation Example
	x86-64 Example Addresses
	Runaway Stack Example
	Today
	Recall: Memory Referencing Bug Example
	Memory Referencing Bug Example
	Such problems are a BIG deal
	String Library Code
	Vulnerable Buffer Code
	Buffer Overflow Disassembly
	Buffer Overflow Stack
	Buffer Overflow Stack Example
	Buffer Overflow Stack Example #1
	Buffer Overflow Stack Example #2
	Stack Smashing Attacks
	Crafting Smashing String
	Smashing String Effect
	Code Injection Attacks
	How Does The Attack Code Execute?
	What To Do About Buffer Overflow Attacks
	1. Avoid Overflow Vulnerabilities in Code (!)
	2. System-Level Protections can help
	2. System-Level Protections can help
	3. Stack Canaries can help
	Protected Buffer Disassembly
	Setting Up Canary
	Checking Canary
	Slide Number 33
	Return-Oriented Programming Attacks
	Gadget Example #1
	Gadget Example #2
	ROP Execution
	Crafting an ROB Attack String
	Today
	Union Allocation
	Using Union to Access Bit Patterns
	Byte Ordering Revisited
	Byte Ordering Example
	Byte Ordering Example (Cont).
	Byte Ordering on IA32
	Byte Ordering on Sun
	Byte Ordering on x86-64
	Summary of Compound Types in C
	Summary
	Exploits Based on Buffer Overflows
	Example: the original Internet worm (1988)
	Example 2: IM War
	IM War (cont.)
	Slide Number 54
	Aside: Worms and Viruses

