Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2"d Lecture, Jan. 18,2018

Instructors:

Franz Franchetti
Seth Copen Goldstein

Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Announcements

m Waitlist

" Please be patient.

= Get the work done
— so you will be ready when you get into the class

m Linux Bootcamp this Sunday, Rashid, 7pm
m First Recitation this coming Monday

m AlV Course, please complete by Sunday

m Lab 0 Due this Sunday

" No grace days
= No late submissions

m Redshelf will be on canvas soon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Waitlist questions

m 15-213: Mary Widom (marwidom@cs.cmu.edu)
m 18-213: ECE Academic services

ece-asc@andrew.cmu.edu

m 15-513: Mary Widom (marwidom@cs.cmu.edu)

m Please don’t contact the instructors with waitlist
guestions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

mailto:cathyf@cs.cmu.edu

Carnegie Mellon

Bootcamp

m 7pm Sunday in Rashid
m Linux basics
m Git basics

m Things like:
®= How to ssh to the shark machines from windows or linux
= How to setup a directory on afs with the right permissions
= How to initialize a directory for git

" The basics of using git as you work on the assignment
= Basic linux tools like: tar, make, gcg, ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

e > < > ‘
0 1 — 0 —

1.1V —

0.0V — /‘A’\/\\
0.2V —N\J/ \’\f
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002t0 11111111>
= Decimal: 010 to 25510

" Hexadecimal 0016 to FFi6

= Base 16 number representation

©| 0[N O O KW N (O
o
[
o
o

T M| O] O TI| 3> O] 00| N[O] UT| B WIN| = O

[¥aYs [faY4 { V4 ir’ 1000

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 1001
= Write FA1D37B1sin C as 10 | 1010
11 | 1011

— OXFA1D37B 15 T 1100

_ 13| 1101
Oxfald37b T TI10

15| 1111

15213: 0011 1011 0110 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
fong 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO 1
R 0[0 f

110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101] 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= /6543210
m Operations
= & |[ntersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Bit-Level Operations in C

>
ions & A Available in C Nl 0“6&?\3“@6
m Operations &, |, ~, " Available in S o 1 onog
= Apply to any “integral” data type 1 |1 | 0001
: : 2 | 2 | 0010
= long, int, short, char, unsigned 3 T3 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise o |5 10101
8 PP 6 | 6 | 0110
7 | 7 | 0111
m Examples (Char data type) 85811000
= ~0x41 > 9 | 9 | 1001
A |10]| 1010
B |11]| 1011
= ~0x00 -> C (12| 1100
D |13 | 1101
E |14 | 1110
= 0Ox69 & 0x55 > F (15[1111

0x69 | 0X55 ->

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Bit-Level Operations in C

N
>
Nl o°6ﬁ\°®d
m Operations & ~, ™ Available in C
P e 0 [0 [0000
= Apply to any “integral” data type 1 |1 | 0001
: : 2 | 2 | 0010
long, int, short, char, unsigned 3 13 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise g 2 8%(1%
/7 | 7 | 0111
m Examples (Char data type) 5 T8 11600
= ~0x41 - OxBE 9 |9 | 1001
o A _[10] 1010
0100 00012 > 1011 11102 5 T11 1011
= ~0x00 - OxFF C [12 | 1100
- ~0000 00002 > 1111 1111, D |15 11101
E |14] 1110
= 0x69 & 0x55 - 0x41 F [15 | 1111

= 0110 10012 & 0101 01012 - 0100 0001>
0x69 | 0x55 - 0x7D
= 0110 10012|0101 01012 - 0111 11012

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
= Logic Operation R ||, !

= View 0 as “Fal
= Anythigs

.« Al
I Watch out for && vs. & (and || vs. |)...

= Example one of the m.ore common oopsies in
e C programming

= 10x00 > N
= 110x41-> 0x01

= Early

= 0x69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01
" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)

= 10x41 > 0x00
= 10x00 - 0x01
= 11I0x41-> 0x01

= 0Ox69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01

" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Shift Operations
m Left Shift: X << vy Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: X >> vy
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 21 00011000

= Throw away extra bits on right Argument x [10100010

= |ogical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
" Arithmetic shift

= Replicate most significant bit on left

Arith. >> 21 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
= Representation: unsigned and signed
o
o
o
o
N
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1) w—2 .
B2UX) = Y x-2' B2T(X) = —Xuq-2" 4+ x-2'
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign Bit

m Cshort 2 bytes long

Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Two-complement: Simple Example

-16 8
10= 0 1 0 1 O 8+2 = 10

N
N
=

-16
1 0 1 1 O -16+4+2 = -10

o0
N
N
=

-10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Numeric Ranges

= Unsigned Values m Two’s Complement Values

* UMin =0 = TMin = 2wl
000...0 100...0
" UMax = 2"-1 " TMax = 271 —-1
111..1 011..1
" Minus1
111..1

Values for W =16

Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMiIn -32768| 80 00| 10000000 00000000
-1 1| FF FF| 11111111 11111111
o) 0| OO0 00| 00000000 00000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
" LONG_MAX
= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14)
1111 15 il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

26

Carnegie Mellon

Break Time!
bumfuzzle: "to confuse or fluster"

Check out:

https://canvas.cmu.edu/courses/3822

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
= Conversion, casting
D
D
D
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Mapping Between Sighed & Unsigned

Two’s Complement m— Unsigned
X *| T2B T B2U > UX
Maintain Same Bit Pattern
Unsigned U2T Two’s Complement
Ux »| U2B »| B2T - X

X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — U 5
0110 6 6
0111 7 —U2Tf— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4> 4
0101 5 5
0110 6 6
0111 7 7
1000 _8 8
1001 _7 9
1010 _6 10
1011 5 +/- 16 11
1100 _4 12
1101 _3 13
1110 2 14
1111 1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B T B2U > UX

Maintain Same Bit Pattern

w-1 0
UX [+]+[+ vee ++[+

X -|+]+ 000 +1+1|+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned

= QOrdering Inversion ® UMax

o —
= Negative — Big Positive UMax =1

_ ﬁ. TMax +1 | unsigned
TMax @ *® TMax Range

2’s Complement

® @
Range _2 .J/ 0)
-2

| TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
OU, 4294967259U

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tX = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

-2

-2

2147483648U

(int) 2147483648U

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relation

<

v N V V AN V V

TMAX =2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned
signed

35

Carnegie Mellon

Unsigned vs. Signed: Easy to Make Mistakes

unsigned 1;
for (1 = cnt-2; 1 >= 0; 1--)
afi] += aJi1+1];

= Can be very subtle
#define DELTA sizeof(int)
int 1;
for (1 = CNT; 1-DELTA >= 0; 1-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
= Intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
D
= Expanding, truncating
D
D
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
m X = Xy Xpye1 s Xpye1 2 Xy 100 X
L]
k copies of MSB < w >
o000
X ! o0 0 o0 0
< k ><€ W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s| ctive, Third Edition 39

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
16 8 4 2 1 16 8 4 2 1
10 = 0 1 O 1 O -10 = 1 1 O
3 f 8 4 2 1 -3 Jf 8 4 2 1
10 = 1 0 1 0] -10 = 1 0] 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Larger Sign Extension Example

short int x = 15213;

int iIXx = (int) Xx;

short Int y = -15213;

int 1y = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
1X 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
1y -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Truncation

m Task:
= Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X' = X1 Xyp s X
< k >< W >
X o0 0 o000
X 4 o000
< W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Truncation: Simple Example

No sign change Sign change

16 8 4 2 1 16 8 4 2 1

2 = O O O 1 O 10 = 0 1 O 1 O
8 4 2 1 8 4 2 1

2 = O O 1 O -6 = 1 O 1 O
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

_16 4 1 -16 8 1

-6 = 1 1 O 1 O -10 = 1 O 1 1 O
8 4 2 1 8 4 2 1

-6 = 1 0] 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 ~10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

m Your job is to develop the driver software.

printf(“%d\n”, getvalue());

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

iqb_is to develop the driver software.

printf(“%d\n”, getvalue());

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Lets run some tests
printf(“%d\n”’, getValue());

50652
1500
9692

26076

1/884

42460

34268

50652

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Lets run some tests
Int x=getValue(); printf(“%d %08x\n”’,x, X);

50652 0000c5dc
1500 000005dc
9692 000025dc

26076 000065dc

17884 000045dc

42460 0000abdc

34268 000085dc

50652 0000c5dc

Those darn
engineers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Only care about least significant 12 bits

Int x=getValue();
X=(X & OxXOfff);
printf(“%d\n”’,x);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Only care about least significant 12 bits

Int x=getValue();
X=X (&0OX0FfT) ;
printf(“%d\n”’,x);

‘ A¥3LIVE a @3

printf(““%x\n”’, Xx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Must sigh extend

iInt x=getValue();
X=(x&0x007FF) | (x&0x080070xFFFFF000:0) ;

printf(“%d\n”’,x);
‘ A¥3L1VE H @3

There is a better way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Because you graduated from 213

iInt x=getValue();
X=(x&0x007FF) | (x&0x080070xFFFFF000:0) ;
printf(“%d\n”’,x);

Ay3Live €l AyaLivs a @3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Lets be really thorough

Int x=getValue();
X=(X&0X00FFTF) | (x&0x080070x1
printf‘“%d\n”’,x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

	Bits, Bytes and Integers – Part 1��15-213/18-213/15-513: Introduction to Computer Systems�2nd Lecture, Jan. 18, 2018
	Announcements
	 Waitlist questions
	Bootcamp
	Today: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Today: Bits, Bytes, and Integers
	Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Today: Bits, Bytes, and Integers
	Encoding Integers
	Two-complement: Simple Example
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Break Time!�	bumfuzzle: "to confuse or fluster"
	Today: Bits, Bytes, and Integers
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Mapping Signed  Unsigned
	Relation between Signed & Unsigned
	Conversion Visualized
	Signed vs. Unsigned in C
	Casting Surprises
	Unsigned vs. Signed: Easy to Make Mistakes
	Summary�Casting Signed ↔ Unsigned: Basic Rules
	Today: Bits, Bytes, and Integers
	Sign Extension
	Sign Extension: Simple Example
	Larger Sign Extension Example
	Truncation
	Truncation: Simple Example
	Summary:�Expanding, Truncating: Basic Rules
	Fake real world example
	Fake real world example
	Lets run some tests
	Lets run some tests
	Only care about least significant 12 bits
	Only care about least significant 12 bits
	Must sign extend
	Because you graduated from 213
	Lets be really thorough
	Summary of Today: Bits, Bytes, and Integers

