
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers – Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2nd Lecture, Jan. 18, 2018

Instructors:
Franz Franchetti
Seth Copen Goldstein
Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 Waitlist
 Please be patient.
 Get the work done

 → so you will be ready when you get into the class

 Linux Bootcamp this Sunday, Rashid, 7pm
 First Recitation this coming Monday
 AIV Course, please complete by Sunday
 Lab 0 Due this Sunday
 No grace days
 No late submissions

 Redshelf will be on canvas soon

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Waitlist questions
 15-213: Mary Widom (marwidom@cs.cmu.edu)
 18-213: ECE Academic services

ece-asc@andrew.cmu.edu
 15-513: Mary Widom (marwidom@cs.cmu.edu)

 Please don’t contact the instructors with waitlist

questions.

mailto:cathyf@cs.cmu.edu

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bootcamp
 7pm Sunday in Rashid
 Linux basics
 Git basics

 Things like:
 How to ssh to the shark machines from windows or linux
 How to setup a directory on afs with the right permissions
 How to initialize a directory for git
 The basics of using git as you work on the assignment
 Basic linux tools like: tar, make, gcc, …

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in binary
 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values
 Byte = 8 bits
 Binary 000000002 to 111111112
 Decimal: 010 to 25510
 Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra
 Developed by George Boole in 19th Century
 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras
 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets
 Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

 Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~0100 00012 → 1011 11102
 ~0x00 → 0xFF

 ~0000 00002 → 1111 11112
 0x69 & 0x55 → 0x41

 0110 10012 & 0101 01012 → 0100 00012
 0x69 | 0x55 → 0x7D

 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations
 Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

 Right Shift: x >> y
 Shift bit-vector x right y positions
 Throw away extra bits on right

 Logical shift
 Fill with 0’s on left

 Arithmetic shift
 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010 Argument x

00010000 << 3

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x

00010000 << 3

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

 short int x = 15213;
 short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

B2T (X) = −xw−1 ⋅2w−1 + xi ⋅2 i

i=0

w−2

∑B2U(X) = xi ⋅2 i

i=0

w−1

∑
Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values
 UMin = 0

000…0
 UMax = 2w – 1

111…1

 Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>
 Declares constants, e.g.,
 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence
 Same encodings for nonnegative

values

 Uniqueness
 Every bit pattern represents

unique integer value
 Each representable integer has

unique bit encoding

 ⇒ Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)
 Bit pattern for two’s comp

integer

X B2T(X) B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–8 8
–7 9
–6 10
–5 11
–4 12
–3 13
–2 14
–1 15

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Break Time!
 bumfuzzle: "to confuse or fluster"

Check out:

https://canvas.cmu.edu/courses/3822

https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s Complement Unsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + + • • •
- + + + + + • • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux X

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned
 Ordering Inversion
 Negative → Big Positive

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C
 Constants
 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned vs. Signed: Easy to Make Mistakes

unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

 Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules
 Bit pattern is maintained
 But reinterpreted
 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension
 Task:
 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:
 X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • • X

X ′ • • • • • •

• • •

w

w k

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 1 1 1 0

-32 16 8 4 2 1

1 1 1 0 1 0 -10 =

Positive number Negative number

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

 Converting from smaller to larger integer data type
 C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation
 Task:
 Given k+w-bit signed or unsigned integer X
 Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
 Drop top k bits:
 X ′ = xw–1 , xw–2 ,…, x0

• • •

• • • X ′
w

X • • • • • •
w k

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

 6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules
 Expanding (e.g., short int to int)
 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small numbers yields expected behavior

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example
 Acme, Inc. has developed a state of the art voltmeter they

are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

 Your job is to develop the driver software.

1500

printf(“%d\n”, getValue());

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example
 Acme, Inc. has developed a state of the art voltmeter they

are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

 Your job is to develop the driver software.

26076

printf(“%d\n”, getValue());

wtf?

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

 50652 0000c5dc
 1500 000005dc
 9692 000025dc
 26076 000065dc
 17884 000045dc
 42460 0000a5dc
 34268 000085dc
 50652 0000c5dc

printf(“%d\n”, getValue());

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

 50652 0000c5dc
 1500 000005dc
 9692 000025dc
 26076 000065dc
 17884 000045dc
 42460 0000a5dc
 34268 000085dc
 50652 0000c5dc

int x=getValue(); printf(“%d %08x\n”,x, x);

Those darn
engineers!

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

1500

int x=getValue();
x=(x & 0x0fff);
printf(“%d\n”,x);

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

2596

int x=getValue();
x=x(&0x0fff);
printf(“%d\n”,x);

printf(“%x\n”, x);

a24

hmm?

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Must sign extend

-1500

int x=getValue();
x=(x&0x007ff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

There is a better way.

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Because you graduated from 213

0

int x=getValue();
x=(x&0x007ff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

huh?

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets be really thorough

int x=getValue();
x=(x&0x00fff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings
 Summary

	Bits, Bytes and Integers – Part 1��15-213/18-213/15-513: Introduction to Computer Systems�2nd Lecture, Jan. 18, 2018
	Announcements
	 Waitlist questions
	Bootcamp
	Today: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Today: Bits, Bytes, and Integers
	Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Today: Bits, Bytes, and Integers
	Encoding Integers
	Two-complement: Simple Example
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Break Time!�	bumfuzzle: "to confuse or fluster"
	Today: Bits, Bytes, and Integers
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Mapping Signed  Unsigned
	Relation between Signed & Unsigned
	Conversion Visualized
	Signed vs. Unsigned in C
	Casting Surprises
	Unsigned vs. Signed: Easy to Make Mistakes
	Summary�Casting Signed ↔ Unsigned: Basic Rules
	Today: Bits, Bytes, and Integers
	Sign Extension
	Sign Extension: Simple Example
	Larger Sign Extension Example
	Truncation
	Truncation: Simple Example
	Summary:�Expanding, Truncating: Basic Rules
	Fake real world example
	Fake real world example
	Lets run some tests
	Lets run some tests
	Only care about least significant 12 bits
	Only care about least significant 12 bits
	Must sign extend
	Because you graduated from 213
	Lets be really thorough
	Summary of Today: Bits, Bytes, and Integers

