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Announcements 

 Waitlist 
 Please be patient. 
 Get the work done  

         → so you will be ready when you get into the class 

 Linux Bootcamp this Sunday, Rashid, 7pm 
 First Recitation this coming Monday 
 AIV Course, please complete by Sunday 
 Lab 0 Due this Sunday 
 No grace days 
 No late submissions 

 Redshelf will be on canvas soon 
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 Waitlist questions 
 15-213: Mary Widom (marwidom@cs.cmu.edu) 
 18-213: ECE Academic services 

ece-asc@andrew.cmu.edu 
 15-513: Mary Widom (marwidom@cs.cmu.edu) 

 
 Please don’t contact the instructors with waitlist 

questions. 
 

mailto:cathyf@cs.cmu.edu
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Bootcamp 
 7pm Sunday in Rashid 
 Linux basics 
 Git basics 

 
 Things like: 
 How to ssh to the shark machines from windows or linux 
 How to setup a directory on afs with the right permissions 
 How to initialize a directory for git 
 The basics of using git as you work on the assignment 
 Basic linux tools like: tar, make, gcc, … 



Carnegie Mellon 

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 
 Summary 

 Representations in memory, pointers, strings 
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Everything is bits 
 Each bit is 0 or 1 
 By encoding/interpreting sets of bits in various ways 
 Computers determine what to do (instructions) 
 … and represent and manipulate numbers, sets, strings, etc… 

 Why bits?  Electronic Implementation 
 Easy to store with bistable elements 
 Reliably transmitted on noisy and inaccurate wires  

0.0V 

0.2V 

0.9V 

1.1V 

0 1 0 
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For example, can count in binary 
 Base 2 Number Representation 
 Represent 1521310 as 111011011011012 

 Represent 1.2010 as 1.0011001100110011[0011]…2 

 Represent 1.5213 X 104  as 1.11011011011012 X 213 
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Encoding Byte Values 
 Byte = 8 bits 
 Binary 000000002 to 111111112 
 Decimal: 010 to 25510 
 Hexadecimal 0016 to FF16 
 Base 16 number representation 
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 
 Write FA1D37B16 in C as 

– 0xFA1D37B 
– 0xfa1d37b  

 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 

15213: 0011 1011 0110 1101 

3 B 6 D 
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Example Data Representations 

C Data Type Typical 32-bit Typical 64-bit x86-64 

char 1 1 1 

short 2 2 2 

int 4 4 4 

long 4 8 8 

float 4 4 4 

double 8 8 8 

pointer 4 8 8 
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Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 
 Summary 

 Representations in memory, pointers, strings 
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Boolean Algebra 
 Developed by George Boole in 19th Century 
 Algebraic representation of logic 
 Encode “True” as 1 and “False” as 0 

And 
 A&B = 1 when both A=1 and B=1 

Or 
 A|B = 1 when either A=1 or B=1 

Not 
 ~A = 1 when A=0 

Exclusive-Or (Xor) 
 A^B = 1 when either A=1 or B=1, but not both 
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General Boolean Algebras 
 Operate on Bit Vectors 
 Operations applied bitwise 

 
 
 

 All of the Properties of Boolean Algebra Apply 

  01101001 
& 01010101 
  01000001 

  01101001 
| 01010101 
  01111101 

  01101001 
^ 01010101 
  00111100 

   
~ 01010101 
  10101010   01000001 01111101 00111100 10101010 
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Example: Representing & Manipulating Sets 
 Representation 
 Width w bit vector represents subsets of {0, …, w–1} 
 aj = 1 if j  ∈ A 

 
  01101001 { 0, 3, 5, 6 } 
  76543210 

 
  01010101 { 0, 2, 4, 6 } 
  76543210 

 Operations 
 &    Intersection  01000001 { 0, 6 } 
 |     Union   01111101 { 0, 2, 3, 4, 5, 6 } 
 ^     Symmetric difference 00111100 { 2, 3, 4, 5 } 
 ~     Complement  10101010 { 1, 3, 5, 7 } 
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Bit-Level Operations in C 

 Operations &,  |,  ~,  ^ Available in C 
 Apply to any “integral” data type 

 long, int, short, char, unsigned 
 View arguments as bit vectors 
 Arguments applied bit-wise 

 Examples (Char data type) 
 ~0x41 → 0xBE 

 ~010000012 → 101111102 
 ~0x00 → 0xFF 

 ~000000002 → 111111112 
 0x69 & 0x55 → 0x41 

 011010012 & 010101012 → 010000012 
 0x69 | 0x55 → 0x7D 

 011010012 | 010101012 → 011111012 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 
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 Operations &,  |,  ~,  ^ Available in C 
 Apply to any “integral” data type 

 long, int, short, char, unsigned 
 View arguments as bit vectors 
 Arguments applied bit-wise 

 Examples (Char data type) 
 ~0x41 → 0xBE 

 ~010000012 → 101111102 
 ~0x00 → 0xFF 

 ~000000002 → 111111112 
 0x69 & 0x55 → 0x41 

 011010012 & 010101012 → 010000012 
 0x69 | 0x55 → 0x7D 

 011010012 | 010101012 → 011111012 

Bit-Level Operations in C 

 Operations &,  |,  ~,  ^ Available in C 
 Apply to any “integral” data type 

 long, int, short, char, unsigned 
 View arguments as bit vectors 
 Arguments applied bit-wise 

 Examples (Char data type) 
 ~0x41 → 0xBE 

 ~0100 00012 → 1011 11102 
 ~0x00 → 0xFF 

 ~0000 00002 → 1111 11112 
 0x69 & 0x55 → 0x41 

 0110 10012 & 0101 01012 → 0100 00012 
 0x69 | 0x55 → 0x7D 

 0110 10012 | 0101 01012 → 0111 11012 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 
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Contrast: Logic Operations in C 
 Contrast to Bit-Level Operators 
 Logic Operations: &&, ||, ! 
 View 0 as “False” 
 Anything nonzero as “True” 
 Always return 0 or 1 
 Early termination 

 Examples (char data type) 
 !0x41 →  0x00 
 !0x00 →  0x01 
 !!0x41→  0x01 

 0x69 && 0x55 →  0x01 
 0x69 || 0x55 →  0x01 
 p && *p  (avoids null pointer access) 

Watch out for && vs. & (and || vs. |)…  
one of the more common oopsies in  
C programming 
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Contrast: Logic Operations in C 
 Contrast to Bit-Level Operators 
 Logic Operations: &&, ||, ! 
 View 0 as “False” 
 Anything nonzero as “True” 
 Always return 0 or 1 
 Early termination 

 Examples (char data type) 
 !0x41 →  0x00 
 !0x00 →  0x01 
 !!0x41→  0x01 

 0x69 && 0x55 →  0x01 
 0x69 || 0x55 →  0x01 
 p && *p  (avoids null pointer access) 
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Shift Operations 
 Left Shift:  x << y 
 Shift bit-vector x left y positions 

– Throw away extra bits on left 
 Fill with 0’s on right 

 Right Shift:  x >> y 
 Shift bit-vector x right y positions 
 Throw away extra bits on right 

 Logical shift 
 Fill with 0’s on left 

 Arithmetic shift 
 Replicate most significant bit on left 

 Undefined Behavior 
 Shift amount < 0 or ≥ word size 

01100010 Argument x 

00010000 << 3 

00011000 Log. >> 2 

00011000 Arith. >> 2 

10100010 Argument x 

00010000 << 3 

00101000 Log. >> 2 

11101000 Arith. >> 2 

00010000 00010000 

00011000 00011000 

00011000 00011000 

00010000 

00101000 

11101000 

00010000 

00101000 

11101000 
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Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 
 Summary 

 Representations in memory, pointers, strings 
 Summary 
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Encoding Integers 

  short int x =  15213; 
  short int y = -15213; 

 C short 2 bytes long 
 
 

 Sign Bit 
 For 2’s complement, most significant bit indicates sign 

 0 for nonnegative 
 1 for negative 

B2T (X ) = −xw−1 ⋅2w−1 + xi ⋅2 i

i=0

w−2

∑B2U(X ) = xi ⋅2 i

i=0

w−1

∑
Unsigned Two’s Complement 

Sign Bit 

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
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Two-complement: Simple Example 

10 =  
-16 8 4 2 1 

0 1 0 1 0 

-10 =  
-16 8 4 2 1 

1 0 1 1 0 

8+2 = 10 

-16+4+2 = -10 
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Two-complement Encoding Example (Cont.) 
  x =      15213: 00111011 01101101 
  y =     -15213: 11000100 10010011 

Weight 15213 -15213 
1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Numeric Ranges 
 Unsigned Values 
 UMin = 0 

000…0 
 UMax  =  2w – 1 

111…1 

 Two’s Complement Values 
 TMin =  –2w–1 

100…0 
 TMax  =  2w–1 – 1 

011…1 
 Minus 1 

111…1 

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16 
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Values for Different Word Sizes 

 Observations 
 |TMin |  =  TMax + 1 

 Asymmetric range 
 UMax = 2 * TMax + 1 

   

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

 C Programming 
 #include <limits.h> 
 Declares constants, e.g., 
 ULONG_MAX 
 LONG_MAX 
 LONG_MIN 

 Values platform specific   
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Unsigned & Signed Numeric Values 
 Equivalence 
 Same encodings for nonnegative 

values 

 Uniqueness 
 Every bit pattern represents 

unique integer value 
 Each representable integer has 

unique bit encoding 

 ⇒ Can Invert Mappings 
 U2B(x)  =  B2U-1(x) 

 Bit pattern for unsigned 
integer 

 T2B(x)  =  B2T-1(x) 
 Bit pattern for two’s comp 

integer 

X B2T(X) B2U(X) 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 

–8 8 
–7 9 
–6 10 
–5 11 
–4 12 
–3 13 
–2 14 
–1 15 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0 
1 
2 
3 
4 
5 
6 
7 
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Break Time! 
 bumfuzzle: "to confuse or fluster" 

Check out: 
 
https://canvas.cmu.edu/courses/3822 

https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822
https://canvas.cmu.edu/courses/3822
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Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 
 Summary 

 Representations in memory, pointers, strings 
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T2U 
T2B B2U 

Two’s Complement Unsigned 

Maintain Same Bit Pattern 

x ux X 

Mapping Between Signed & Unsigned 

U2T 
U2B B2T 

Two’s Complement Unsigned 

Maintain Same Bit Pattern 

ux x 
X 

 Mappings between unsigned and two’s complement numbers: 
 Keep bit representations and reinterpret 
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Mapping Signed ↔ Unsigned 
Signed 

0 

1 

2 

3 

4 

5 

6 

7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Unsigned 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Bits 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

U2T 
T2U 
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Mapping Signed ↔ Unsigned 
Signed 

0 

1 

2 

3 

4 

5 

6 

7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Unsigned 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Bits 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

= 

+/- 16 
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+ + + + + + • • • 
- + + + + + • • • 

ux 
x 

w–1 0 

Relation between Signed & Unsigned 

Large negative weight 
becomes 

Large positive weight 

T2U 
T2B B2U 

Two’s Complement Unsigned 

Maintain Same Bit Pattern 

x ux X 
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0 

TMax 

TMin 

–1 
–2 

0 

UMax 
UMax – 1 

TMax 
TMax  + 1 

2’s Complement 
Range 

Unsigned 
Range 

Conversion Visualized 
 2’s Comp. → Unsigned 
 Ordering Inversion 
 Negative → Big Positive 
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Signed vs. Unsigned in C 
 Constants 
 By default are considered to be signed integers 
 Unsigned if have “U” as suffix 

0U, 4294967259U 

 Casting 
 Explicit casting between signed & unsigned same as U2T and T2U 

int tx, ty; 
unsigned ux, uy; 
tx = (int) ux; 
uy = (unsigned) ty; 

 
 Implicit casting also occurs via assignments and procedure calls 

tx = ux;                   int fun(unsigned u); 
uy = ty;                   uy = fun(tx); 
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 0 0U == unsigned 
 -1 0 < signed 
 -1 0U > unsigned 
 2147483647 -2147483648  > signed 
 2147483647U -2147483648  < unsigned 
 -1 -2  > signed 
 (unsigned) -1 -2  > unsigned 
  2147483647  2147483648U  < unsigned 
  2147483647  (int) 2147483648U > signed 

Casting Surprises 
 Expression Evaluation 

 If there is a mix of unsigned and signed in single expression,  
signed values implicitly cast to unsigned 
 Including comparison operations <, >, ==, <=, >= 
 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647 

 Constant1 Constant2 Relation Evaluation 
 0 0U  
 -1 0  
 -1 0U  
 2147483647 -2147483647-1   
 2147483647U -2147483647-1   
 -1 -2   
 (unsigned)-1 -2   
  2147483647  2147483648U   
  2147483647  (int) 2147483648U   
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Unsigned vs. Signed: Easy to Make Mistakes 

unsigned i; 
for (i = cnt-2; i >= 0; i--) 
  a[i] += a[i+1]; 

 
 

 Can be very subtle 
#define DELTA sizeof(int) 
int i; 
for (i = CNT; i-DELTA >= 0; i-= DELTA) 
  . . . 
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Summary 
Casting Signed ↔ Unsigned: Basic Rules 
 Bit pattern is maintained 
 But reinterpreted 
 Can have unexpected effects: adding or subtracting 2w 

 
 Expression containing signed and unsigned int 
 int is cast to unsigned!! 
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Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 
 Summary 

 Representations in memory, pointers, strings 
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Sign Extension 
 Task: 
 Given w-bit signed integer x 
 Convert it to w+k-bit integer with same value 

 Rule: 
 Make k copies of sign bit: 
 X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0 

 
k copies of MSB 

• • • X  

X ′ • • • • • • 

• • • 

w 

w k 
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Sign Extension: Simple Example 

10 =  

-16 8 4 2 1 

0 1 0 1 0 

10 =  

-32 16 8 4 2 1 

0 0 1 0 1 0 

-10 =  

-16 8 4 2 1 

1 1 1 1 0 

-32 16 8 4 2 1 

1 1 1 0 1 0 -10 =  

Positive number Negative number 
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Larger Sign Extension Example 

 Converting from smaller to larger integer data type 
 C automatically performs sign extension 

  short int x =  15213; 
  int      ix = (int) x;  
  short int y = -15213; 
  int      iy = (int) y; 

Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101 
y -15213 C4 93 11000100 10010011 
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011 
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Truncation 
 Task: 
 Given k+w-bit signed or unsigned integer X 
 Convert it to w-bit integer X’ with same value for “small enough” X 

 Rule: 
 Drop top k bits: 
 X ′ =  xw–1 , xw–2 ,…, x0 

 

• • • 

• • • X ′  
w 

X • • • • • • 
w k 
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Truncation: Simple Example 

10 =  

-16 8 4 2 1 

0 1 0 1 0 

-6 =  

-8 4 2 1 

1 0 1 0 

-10 =  

-16 8 4 2 1 

1 0 1 1 0 

 6 =  

-8 4 2 1 

0 1 1 0 

Sign change 

2 =  

-16 8 4 2 1 

0 0 0 1 0 

2 =  

-8 4 2 1 

0 0 1 0 

-6 =  

-16 8 4 2 1 

1 1 0 1 0 

-6 =  

-8 4 2 1 

1 0 1 0 

No sign change 

10 mod 16 = 10U mod 16 = 10U = -6 

-10 mod 16 = 22U mod 16 = 6U = 6 

2 mod 16 = 2 

-6 mod 16 = 26U mod 16 = 10U = -6 
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Summary: 
Expanding, Truncating: Basic Rules 
 Expanding (e.g., short int to int) 
 Unsigned: zeros added 
 Signed: sign extension 
 Both yield expected result 

 

 Truncating (e.g., unsigned to unsigned short) 
 Unsigned/signed: bits are truncated 
 Result reinterpreted 
 Unsigned: mod operation 
 Signed: similar to mod 
 For small numbers yields expected behavior 
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Fake real world example 
 Acme, Inc. has developed a state of the art voltmeter they 

are connecting to a pc.  It is precise to the millivolt and 
does not drain the unit under test. 

 Your job is to develop the driver software. 

1500 

printf(“%d\n”, getValue()); 
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Fake real world example 
 Acme, Inc. has developed a state of the art voltmeter they 

are connecting to a pc.  It is precise to the millivolt and 
does not drain the unit under test. 

 Your job is to develop the driver software. 

26076 

printf(“%d\n”, getValue()); 

wtf? 
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Lets run some tests 

 50652  0000c5dc 
  1500  000005dc 
  9692  000025dc 
 26076  000065dc 
 17884  000045dc 
 42460  0000a5dc 
 34268  000085dc 
 50652  0000c5dc 

printf(“%d\n”, getValue()); 
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Lets run some tests 

 50652  0000c5dc 
  1500  000005dc 
  9692  000025dc 
 26076  000065dc 
 17884  000045dc 
 42460  0000a5dc 
 34268  000085dc 
 50652  0000c5dc 

int x=getValue(); printf(“%d %08x\n”,x, x); 

Those darn 
engineers! 
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Only care about least significant 12 bits 

1500 

int x=getValue(); 
x=(x & 0x0fff); 
printf(“%d\n”,x); 
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Only care about least significant 12 bits 

2596 

int x=getValue(); 
x=x(&0x0fff); 
printf(“%d\n”,x); 

printf(“%x\n”, x); 

a24 

hmm? 
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Must sign extend 

-1500 

int x=getValue(); 
x=(x&0x007ff)|(x&0x0800?0xfffff000:0); 
printf(“%d\n”,x); 

There is a better way.  
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Because you graduated from 213 

0 

int x=getValue(); 
x=(x&0x007ff)|(x&0x0800?0xfffff000:0); 
printf(“%d\n”,x); 

huh? 
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Lets be really thorough 

int x=getValue(); 
x=(x&0x00fff)|(x&0x0800?0xfffff000:0); 
printf(“%d\n”,x); 
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Summary of Today: Bits, Bytes, and Integers 
 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 
 Conversion, casting 
 Expanding, truncating 
 Addition, negation, multiplication, shifting 

 Representations in memory, pointers, strings 
 Summary 
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