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Carnegie Mellon

Announcements

m Waitlist

" Please be patient.

= Get the work done
— so you will be ready when you get into the class

m Linux Bootcamp this Sunday, Rashid, 7pm
m First Recitation this coming Monday

m AlV Course, please complete by Sunday

m Lab 0 Due this Sunday

" No grace days
= No late submissions

m Redshelf will be on canvas soon
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Waitlist questions

m 15-213: Mary Widom (marwidom@cs.cmu.edu)
m 18-213: ECE Academic services

ece-asc@andrew.cmu.edu

m 15-513: Mary Widom (marwidom@cs.cmu.edu)

m Please don’t contact the instructors with waitlist
guestions.
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Bootcamp

m 7pm Sunday in Rashid
m Linux basics
m Git basics

m Things like:
®= How to ssh to the shark machines from windows or linux
= How to setup a directory on afs with the right permissions
= How to initialize a directory for git

" The basics of using git as you work on the assignment
= Basic linux tools like: tar, make, gcg, ...
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Today: Bits, Bytes, and Integers

m Representing information as bits
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Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

e > < > ‘
0 1 — 0 —

1.1V —

0.0V — /‘A’\/\\
0.2V —N\J/ \’\f
0.0V —
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For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213
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Encoding Byte Values

m Byte = 8 bits
= Binary 000000002t0 11111111>
= Decimal: 010 to 25510

" Hexadecimal 0016 to FFi6

= Base 16 number representation

©| 0[N O O KW N (O
o
[
o
o

T M| O] O TI| 3> O] 00| N[ O] UT| B WIN| = O

[¥aYs [faY4 { V4 ir’ 1000

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 1001
= Write FA1D37B1sin C as 10 | 1010
11 | 1011

— OXFA1D37B 15 T 1100

_ 13| 1101
Oxfald37b T TI10

15| 1111

15213: 0011 1011 0110 1101

3 B 6 D
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Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
fong 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8
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Today: Bits, Bytes, and Integers

m Bit-level manipulations
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Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO 1
R 0[0 f

110 111 0
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General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 ] 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply
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Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= /6543210
m Operations
= & |[ntersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}
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Bit-Level Operations in C

>
ions & A Available in C Nl 0“6&?\3“@6
m Operations &, |, ~, " Available in S o 1 onog
= Apply to any “integral” data type 1 |1 | 0001
: : 2 | 2 | 0010
= long, int, short, char, unsigned 3 T3 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise o |5 10101
8 PP 6 | 6 | 0110
7 | 7 | 0111
m Examples (Char data type) 85811000
= ~0x41 > 9 | 9 | 1001
A |10 ]| 1010
B |11 ]| 1011
= ~0x00 -> C (12| 1100
D |13 | 1101
E |14 | 1110
= 0Ox69 & 0x55 > F (15[ 1111

0x69 | 0X55 ->
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Bit-Level Operations in C

N
>
Nl o°6ﬁ\°®d
m Operations & ~, ™ Available in C
P e 0 [0 [ 0000
= Apply to any “integral” data type 1 |1 | 0001
: : 2 | 2 | 0010
long, int, short, char, unsigned 3 13 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise g 2 8%(1%
/7 | 7 | 0111
m Examples (Char data type) 5 T8 11600
= ~0x41 - OxBE 9 |9 | 1001
o A _[10] 1010
0100 00012 > 1011 11102 5 T11 1011
= ~0x00 - OxFF C [12 | 1100
- ~0000 00002 > 1111 1111, D |15 11101
E |14 ] 1110
= 0x69 & 0x55 - 0x41 F [15 | 1111

= 0110 10012 & 0101 01012 - 0100 0001>
0x69 | 0x55 - 0x7D
= 0110 10012|0101 01012 - 0111 11012

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16



Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
= Logic Operation R ||, !

= View 0 as “Fal
= Anythigs

.« Al
I Watch out for && vs. & (and || vs. |)...

= Example one of the m.ore common oopsies in
e C programming

= 10x00 > N
= 110x41-> 0x01

= Early

= 0x69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01
" p&&*p (avoids null pointer access)
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Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)

= 10x41 > 0x00
= 10x00 - 0x01
= 11I0x41-> 0x01

= 0Ox69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01

" p&&*p (avoids null pointer access)
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Shift Operations
m Left Shift: X << vy Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: X >> vy
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 21 00011000

= Throw away extra bits on right Argument x [ 10100010

= |ogical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
" Arithmetic shift

= Replicate most significant bit on left

Arith. >> 21 11101000

m Undefined Behavior

= Shift amount < 0 or > word size
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Today: Bits, Bytes, and Integers

N
N
m Integers
= Representation: unsigned and signed
o
o
o
o
N
N
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Encoding Integers

Unsigned Two’s Complement
w-1 ) w—2 .
B2UX) = Y x-2' B2T(X) = —Xuq-2" 4+ x-2'
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign Bit

m Cshort 2 bytes long

Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
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Two-complement: Simple Example

-16 8
10= 0 1 0 1 O 8+2 = 10

N
N
=

-16
1 0 1 1 O -16+4+2 = -10

o0
N
N
=

-10
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Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213
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Numeric Ranges

= Unsigned Values m Two’s Complement Values

* UMin =0 = TMin = 2wl
000...0 100...0
" UMax = 2"-1 " TMax = 271 —-1
111..1 011..1
" Minus1
111..1

Values for W =16

Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMiIn -32768| 80 00| 10000000 00000000
-1 1| FF FF| 11111111 11111111
o) 0| OO0 00| 00000000 00000000
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Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
" LONG_MAX
= LONG_MIN

= Values platform specific
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Unsighed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 )
1111 15 il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer
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Break Time!
bumfuzzle: "to confuse or fluster"

Check out:

https://canvas.cmu.edu/courses/3822
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Today: Bits, Bytes, and Integers

n
n
m Integers
o
= Conversion, casting
D
D
D
n
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Mapping Between Sighed & Unsigned

Two’s Complement m— Unsigned
X *| T2B T B2U > UX
Maintain Same Bit Pattern
Unsigned U2T Two’s Complement
Ux »| U2B »| B2T - X

X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
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Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — U 5
0110 6 6
0111 7 —U2Tf— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4> 4
0101 5 5
0110 6 6
0111 7 7
1000 _8 8
1001 _7 9
1010 _6 10
1011 5 +/- 16 11
1100 _4 12
1101 _3 13
1110 2 14
1111 1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B T B2U > UX

Maintain Same Bit Pattern

w-1 0
UX [+]+[+ vee ++[+

X -|+]+ 000 +1+1|+

Large negative weight
becomes
Large positive weight
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Conversion Visualized

m 2’s Comp. —> Unsigned

= QOrdering Inversion ® UMax

o —
= Negative — Big Positive UMax =1

_ ﬁ. TMax +1 | unsigned
TMax @ *®  TMax Range

2’s Complement

® @
Range _2 .J/ 0 )
-2

| TMin
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Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
OU, 4294967259U

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tX = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);
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Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

-2

-2

2147483648U

(int) 2147483648U

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relation

<

v N V V AN V V

TMAX =2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned
signed
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Unsigned vs. Signed: Easy to Make Mistakes

unsigned 1;
for (1 = cnt-2; 1 >= 0; 1--)
afi] += aJi1+1];

= Can be very subtle
#define DELTA sizeof(int)
int 1;
for (1 = CNT; 1-DELTA >= 0; 1-= DELTA)
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Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
= Intiscasttounsigned!!
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Today: Bits, Bytes, and Integers

n
n
m Integers
o
D
= Expanding, truncating
D
D
n
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Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
m X = Xy Xpye1 s Xpye1 2 Xy 100 X
L ]
k copies of MSB < w >
o000
X ! o0 0 o0 0
< k ><€ W >
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Sign Extension: Simple Example

Positive number Negative number
16 8 4 2 1 16 8 4 2 1
10 = 0 1 O 1 O -10 = 1 1 O
3 f 8 4 2 1 -3 Jf 8 4 2 1
10 = 1 0 1 0] -10 = 1 0] 1 0
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Larger Sign Extension Example

short int x = 15213;

int iIXx = (int) Xx;

short Int y = -15213;

int 1y = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
1X 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
1y -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension
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Truncation

m Task:
= Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X' = X1 Xyp s X
< k >< W >
X o0 0 o000
X 4 o000
< W >
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Truncation: Simple Example

No sign change Sign change

16 8 4 2 1 16 8 4 2 1

2 = O O O 1 O 10 = 0 1 O 1 O
8 4 2 1 8 4 2 1

2 = O O 1 O -6 = 1 O 1 O
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

_16 4 1 -16 8 1

-6 = 1 1 O 1 O -10 = 1 O 1 1 O
8 4 2 1 8 4 2 1

-6 = 1 0] 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 ~10 mod 16 = 22U mod 16 = 6U = 6
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behavior
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Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

m Your job is to develop the driver software.

printf(“%d\n”, getvalue());
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Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

iqb_is to develop the driver software.

printf(“%d\n”, getvalue());
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Lets run some tests
printf(“%d\n”’, getValue());

50652
1500
9692

26076

1/884

42460

34268

50652
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Lets run some tests
Int x=getValue(); printf(“%d %08x\n”’,x, X);

50652 0000c5dc
1500 000005dc
9692 000025dc

26076 000065dc

17884 000045dc

42460 0000abdc

34268 000085dc

50652 0000c5dc

Those darn
engineers!
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Only care about least significant 12 bits

Int x=getValue();
X=(X & OxXOfff);
printf(“%d\n”’,x);
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Only care about least significant 12 bits

Int x=getValue();
X=X (&0OX0FfT) ;
printf(“%d\n”’,x);

‘ A¥3LIVE a @3

printf(““%x\n”’, Xx);
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Must sigh extend

iInt x=getValue();
X=(x&0x007FF) | (x&0x080070xFFFFF000:0) ;

printf(“%d\n”’,x);
‘ A¥3L1VE H @3

There is a better way.
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Because you graduated from 213

iInt x=getValue();
X=(x&0x007FF) | (x&0x080070xFFFFF000:0) ;
printf(“%d\n”’,x);

Ay3Live €l AyaLivs a @3
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Lets be really thorough

Int x=getValue();
X=(X&0X00FFTF) | (x&0x080070x1
printf‘“%d\n”’,x) ;
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Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
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