Processes, Signals, 1/0, Shell Lab

15-213: Introduction to Computer Systems

Agenda

m News

m Processes
" QOverview
* |Important functions

m Signals
® QOverview

" |mportant functions
® Race conditions
m |/O Intro

m Shell Lab Tips

Processes

m Aninstance of an executing program
m Abstraction provided by the operating system
m Properties
Have a process ID(pid) and process group ID(pgid)
Private state — memory, registers, etc.
Shared state - such as open file table
Become zombies when finished running(why?)

Process: fork()

m Prototype:
pid_t fork(void);

m Clones the current process. The new process gets a new pid, but the
same pgid.

m The new process is an exact duplicate of the parent’s state. It has its
own stack, own registers, etc.

m It hasits own file descriptors (but the files themselves are shared).
m Called once, returns twice (once in the parent, once in the child).

m Return value in child is 0, child’s pid in parent. (This is how the parent
can keep track of who its child is.)

m Returns -1 in case of failure.

m After the fork, we do not know which process will run first, the parent
or the child.

Carnegie Mellon

Process: execve()

m Prototype:
int execve(const char *filename, char *const argv(],

char *const envp[]);

m Replaces the current process with a new one. The binary
corresponding to ‘filename’ will be run by current process.

m Called once; does not return (or returns -1 on failure).

m fork() + execve() creates a new process and runs a new binary on it.
This is the usual way of running a new process.

Carnegie Mellon

Process: exit()

m Prototype:
void exit(int status);

m Immediately terminates the process that called it. The process goes to
Zombie state.

m status is normally the return value of main().

m The OS frees the resources (heap, file descriptors, etc.) but not its exit
status. It remains in the process table to await its reaping.

m Zombies are reaped when their parents read their exit status. (If the
parent is dead, this is done by init.) Then its pid can be reused.

Carnegie Mellon

Process: waitpid()

m Prototype:
pid_t waitpid(pid_t pid, int *status, int options);

m The wait family of functions allows a parent to know when a child has
changed state (e.g., terminated).

waitpid returns when the process specified by pid terminates.
pid must be a direct child of the invoking process.

If pid = -1, it will wait for any child of the current process.
Return value: the pid of the child it reaped.

Writes to status: information about the child’s status.

options variable: used to modify waitpid’s behavior.
WNOHANG: keep executing caller until a child terminates.
WUNTRACED: report stopped children too.
WCONTINUED: report continued children too

Processes — setpgid()

m Prototype:
setpgid(pid_t pid, pit_t pgid)
« Sets the process group id(pgid) of the given pid
« If pid=0, setpgid is applied to the calling process
« If pgid=0, setpgid uses pgid=pid of the calling process
« Children inherit the pgid of their parents by default

10

Process Group Diagram

process 5 can reap processes 8 and 213, but not 500.

Only process 213 can reap process 500. "

Concurrency!

pid_t child_pid = fork();

if (child_pid == 0) {
printf("Child\n");
exit(0);

}

else {
printf("Parent!\n");

}
Output?

12

Concurrency!

pid_t child_pid = fork();

if (child_pid == 0) {
printf("Child\n");
exit(0);

}

else {
printf("Parent!\n");

}

Two possible Outcomes:

* Child!
Parent!

* Parent!
Child

13

Carnegie Mellon

Concurrency!
pid t child pid = fork(); int status;
if (child_pid ==0) { pid_t child_pid = fork();

printf("Child!\n"); if (child_pid == 0) {

exit(0); orintf("Child\n");
} exit(0);
else { }
printf("Parent!\n");
else {
} waitpid(child_pid,&status, 0);

rintf("Parent!\n");
Two possible Outcomes: P (\n’)

e Child! }
Parent! Only one possible Outcome:
e Parent! Child!

Child Parent!

14

Agenda

m News
m Processes

" QOverview

®" Important functions
m Signals

" Overview

* |Important functions
* Race conditions
m |/O Intro

m Shell Lab Tips

15

Signals

m Signals are the basic way processes communicate with each other. They
notify a process that an event has occurred (for example, that its child
has terminated).

m They are sent several ways: Ctrl-C, Ctrl-Z, kill()

m Signals are asynchronous. They aren’t necessary received immediately;
they’re received right after a context switch.

m They are non-queuing.
m There isonlyone bit in the context per signal

m If 100 child processes die and send a SIGCHLD, the parent may still
only receive one SIGCHLD

m Three possible ways to react when a signal is received:
m Ignore the signal (do nothing)
m Terminate the process (with op7onal core dump)

m Catch the signal by execu7ng a user-level func7on called signal
handler

16

Sending a signal

m kill(pid_tid, int sig)

» Ifid positive, sends signal sig to process with pid=id

« Ifid negative, sends signal sig to all processes with with pgid=-id

17

Kill - Process

kill(8, SIGINT);

kill() with a positive PID will send the signal only to the

process with that ID. 18

Kill - Process Group

kill(-8, SIGINT):;

kill() with a negative PID will send the signal to all

processes with that group ID. o

Handling signals

m signal(int signum, sighandler_t handler)
« Specifies a handler function to run when signum is received

« sighandler_t means a function which takes in one int argument
and is void (returns nothing)

« When asignal is caught using the handler,its default behavior is
ignored

« The handler can interrupt the process at any time, even while
either it or another signal handler is running

« Control flow of the main program is restored once it's finished
running

« SIGKILL,SIGSTOP cannot be caught

Caveat

* Remember Signals are received asynchronously.
* Signal handlers can be called anytime when the program is running.
* Concurrency bug?

* What if main() and signal_handler() access a common data?

* A typical scenario in your shell lab

* Solution: Block Signals

21

Signals (contd..)

m Blocking Signals
m Processes can choose to block signals using a signhal mask

m While a signal is blocked, the signal will be still delivered to the
process but keep it pending

m No action will be taken until the signal is unblocked
m Implemented using sigprocmask()

m Waiting for Signals
m Sometimes, a process needs to wait for a signal to be received.
m Implemented using sigsuspend()

Blocking Signals — sigprocmask()

m sigprocmask(int option, const sigset_t* set, sigset_t

*oldSet)
« Updates the mask of blocked/unblocked signals using the handler
signal set

« Blocked signals are ignored until unblocked

- Process only tracks whether it has received a blocked signal,
not the count

- Getting SIGCHILD 20 times while blocked then unblocking will
only run its handler once

« option: SIG_BLOCK,SIG_UNBLOCK,SIG_SETMASK

« Signal mask's old value is written into oldSet

Carnegie Mellon

Waiting for Signals — sigsuspend()

m sigsuspend(sigset_t *tempMask)
« Temporarily replaces the signal mask of the process with
tempMask

« Sigsuspend will return once it receives an unblocked signal (and
after its handler has run)

« Good to stop code execution until receiving a signal

« Once sigsuspend returns, it automatically reverts the process
signal mask to its old value

24

Signals — sigsetops

m A family of functions used to create and modify sets of signals. E.g.,
m int sigemptyset(sigset t *set);
m int sigfillset(sigset t *set)
m int sigaddset(sigset t *set, int signum);
m int sigdelset(sigset t *set, int signum);
m These sets can then be used in other functions.
m http://linux.die.net/man/3/sigsetops
m Remember to pass in the address of the sets, not the sets themselves

25

Race Conditions

m Race conditions occur when sequence or timing of events are random
or unknown
m Signal handlers will interrupt currently running code

m When forking, child or parent may run in different order

m If something can go wrong, it will
« Must reason carefully about the possible sequence of events in

concurrent programs

Race Conditions

// sigchld handler installed void sigchld_handler(int signum)
pid_t child_pid = fork(); {
if (child_pid == 0){ int status;
/* child comes here */ pid_t child_pid =
execve(......); waitpid(-1, &status, WNOHANG);
} if (WIFEXITED(status))
else{ remove_job(child_pid);
add_job(child_pid); }
}

* Doesadd job() or remove_job() come first?
* Where can signals be blocked to ensure correctness?

Agenda

m News
m Processes

" QOverview

®" Important functions
m Signals

" QOverview

" |mportant functions
® Race conditions

m 1/O Intro
m Shell Lab Tips

Unix I/O

m All Unix I/O, from network sockets to text files, are based
on one interface.

m A file descriptor is what’s returned by open().
int fd = open("/path/to/file”, O_RDONLY);

m It’s just an int, but you can think of it as a pointer into the
file descriptor table.

m Every process starts with three file descriptors by default:
m 0:STDIN
m 1:STDOUT
m 2:STDERR.

m Every process gets its own file descriptor table, but
processes share the open file table and v-node table.

Unix 1/O — dup2()

m Prototype:
int dup2(int oldfd, int newfd);

m newfd becomes a copy of oldfd;

m Read/write on newfd will access the file corresponding to
oldfd.
m This is handy for implementing I/O redirection in shelllab.

Carnegie Mellon

Unix I/O — Practice Problem

int main()
{
int £d = open(“ab.txt”, O RDONLY);
char c;
fork();
read(£fd, &c,1); //Read one character from the file
printf (“%c\n”,c); //Print the character

Assume the file ab.txt contains “ab”
What do the file tables look like?
What's the output?

What if the process forked before opening the file?

K|

Agenda

m News
m Processes

" QOverview

®" Important functions
m Signals

" QOverview

" |mportant functions
® Race conditions
m |/O Intro

m Shell Lab Tips

Shell Lab Tips

m There's a lot of starter code
« Look over it so you don't needlessly repeat work

m Use the reference shell to figure out the shell's behavior
For instance, the format of the output when a job is stopped
m Use sigsuspend, not waitpid, to wait for foreground jobs

« You will lose points for using tight loops (while(1) {}), sleeps to
wait for the foreground

Shell Lab Tips

m Shell requires SIGINT and SIGSTP to be fowarded to the
foreground job (and all its descendants) of the shell
« How could process groups be useful?

m dup2 is a handy function for the last section, 1/O
redirection

m SIGCHILD handler may have to reap multiple children per
call

m Try actually using your shell and seeing if/where it fails

« Can be easier than looking at the driver output

Carnegie Mellon

Questions?

