Carnegie Mellon

Machine-Level Programming IV:
Xx86-64 Procedures, Data

15-213/18-243, Spring 2014
8th Lecture, Feb. 7t

Instructors:
Anthony Rowe, Seth Goldstein and Gregory Kesden

Carnegie Mellon

Today

m Procedures (x86-64)
m Arrays

" One-dimensional

" Multi-dimensional (nested)
= Multi-level

m Structures
= Allocation
= Access

Xx86-64 Integer Registers

Carnegie Mellon

$rax %eax
$rbx %ebx
Srcx %ecx
$rdx edx
srsi %esi
Srdi %edi
3rsp tesp
srbp %ebp

%r8 sr8d

%r9 $r9d

$rl0 $r10d
srll $rlld
srl2 $rl2d
2rl3 $rl3d
srl4d $rldd
%$rlb5 $r15d

= Twice the number of registers
® Accessible as 8, 16, 32, 64 bits

x86-64 Integer Registers:

Usage Conventions

$rax Return value 2r8 Argument #5
Srbx Callee saved 2r9 Argument #6
$rcx Argument #4 2ril10 Caller saved
$rdx Argument #3 srll Caller Saved
$rsi Argument #2 $rl2 Callee saved
srdi Argument #1 %$rl3 Callee saved
rsSp Stack pointer $rld Callee saved
srbp Callee saved %$rl5 Callee saved

Carnegie Mellon

Xx86-64 Registers

m Arguments passed to functions via registers
= |f more than 6 integral parameters, then pass rest on stack
" These registers can be used as caller-saved as well

m All references to stack frame via stack pointer
= Eliminates need to update $ebp/%rbp

m Other Registers
= 6 callee saved
= 2 caller saved
= 1 return value (also usable as caller saved)
= 1] special (stack pointer)

Carnegie Mellon

X86-64 Long Swap

void swap l(long *xp, long *yp) Swap :

{ movq $rdi), Srdx
long t0 = *xp; movq (%rsi), %rax
long tl1 = *yp; movq $rax, (%rdi)
*xp = tl; movqg grdx, (%rsi)
*yp = t0; ret

}

m Operands passed in registers
= First (xp) in $rdi, second (yp) in $rsi rtn Ptr [%rsp
. EA i

64-bit pointers No stack
m No stack operations required (except ret) frame

m Avoiding stack

® Can hold all local information in registers

x86-64 Locals in the Red Zone

swap_a:
movqg (%rdi), S%Srax
movqg %rax, -24(%rsp)
movq %$rsi), %rax
movqg %rax, -16(%rsp)
movqg -16(%rsp), S%Srax
movqg Srax, (%rdi)
movg -24(%rsp), %rax
movqg S%rax, (%rsi)

/* Swap, using local array */
void swap a(long *xp, long *yp)
{

volatile long loc[2];

loc[0] = *xp;

loc[1l] = *yp;

*xp = loc[l];

*yp = loc[O0];

ret
m Avoiding Stack Pointer Change rtnPtr [~ srsp
® Can hold all information within small -8 | unused
window beyond stack pointer —16| 10c[1]
-24| loc[0]

Carnegie Mellon

x86-64 NonlLeaf without Stack Frame

/* Swap a[i] & a[i+l] */ m No values held while swap being
void swap ele(long a[], int i) invoked

{
swap(&a[i], &a[i+1]);
} m No callee save registers needed

m rep instruction inserted as no-op

= Based on recommendation from AMD

swap ele:
movslqg %esi,3rsi # Sign extend i
leag 8(%rdi,%rsi,8), %rax # &a[i+l]
leaq $rdi,%rsi,8), %$rdi # &a[i] (1%t arg)
movq %$rax, %rsi # (27 arqg)
call swap
rep # No-op

ret

Carnegie Mellon

x86-64 Stack Frame Example

swap ele su:
movq $rbx, -16(%rsp)
movqg %$rbp, -8 (%rsp)
subg $16, %$rsp
movslg %esi,%rax

long sum = 0;
/* Swap a[i] & a[i+l] */
void swap ele su
(long a[], int i)
{

swap (&a[i], &al[i+l]); leaq 8(%rdi,%rax,8), %rbx
sum += (a[i]*a[i+1]); leaq %rdi,%rax,8), %rbp
} movq $rbx, %rsi
movq srbp, %rdi
call swap
m Keepsvaluesof &a[i] and movq :6rbx) , :ﬁrax
&a[i+1] in callee save imulqg $rbp) , %$rax
registers addq trax, sum(3rip)
© movq ($rsp), %rbx
movq 8 (¥rsp), %rbp
m Must set up stack frame to addqg $16, %rsp

save these registers ret

Carnegie Mellon

Understanding x86-64 Stack Frame

swap ele su:

movq
movq
subq
movslqg
leaq
leaq
movq
movqg
call
movq
imulqg
addqg
movq
movq
addqg
ret

$rbx, -16(%rsp)
%rbp, -8 (%rsp)
$16, %$rsp

%esi, %rax
8 (%$rdi, %rax,8),

%$rdi, $rax, 8),
$rbx, %rsi
¥rbp, %rdi
swap

%$rbx) , %rax

%rbp) , S%rax
Srax, sum(3rip)

%rsp), S%rbx
8 ($rsp), %rbp
$16, %rsp

$rbx

srbp

3H = HHHH T

3H = H I H

Save 5%rbx

Save 53%rbp

Allocate stack frame
Extend i

&af[i+l] (callee save)
&af[i] (callee save)
274 argument

1st argument

Get a[i+1]
Multiply by a[i]
Add to sum
Restore $%rbx
Restore S%rbp
Deallocate frame

Understanding x86-64 Stack Frame

movqg $rbx, -16(%rsp) # Save %rbx srsp e addr
movqg $rbp, -8 (%rsp) # Save S%rbp
-8| S%rbp
-16| %rbx
subg $16, %$rsp # Allocate stack frame
® 06 O rtn addr
+8| Srbp
$rsp —* 5%rbx

movqg (%rsp), %rbx # Restore %$rbx
movq 8 ($rsp), %rbp # Restore %rbp

addq $16, S%rsp # Deallocate frame

Carnegie Mellon

Interesting Features of Stack Frame

m Allocate entire frame at once
= All stack accesses can be relative to $rsp
= Do by decrementing stack pointer
® Can delay allocation, since safe to temporarily use red zone

m Simple deallocation
" |ncrement stack pointer
= No base/frame pointer needed

Carnegie Mellon

x86-64 Procedure Summary

m Heavy use of registers
= Parameter passing
" More temporaries since more registers

m Minimal use of stack
= Sometimes none
= Allocate/deallocate entire block

m Many tricky optimizations
= What kind of stack frame to use

= Various allocation techniques

Carnegie Mellon

Today

m Arrays
" One-dimensional

" Multi-dimensional (nested)
= Multi-level

Carnegie Mellon

Basic Data Types

m Integral
= Stored & operated on in general (integer) registers
= Signed vs. unsigned depends on instructions used

Intel ASM Bytes C

byte b 1 [unsigned] char

word w 2 [unsigned] short

double word 1 4 [unsigned] int

quad word q 8 [unsigned] long int (x86-64)

m Floating Point

= Stored & operated on in floating point registers

Intel ASM Bytes C
Single s 4 float
Double 1 8 double

Extended t 10/12/16 long double

Array Allocation

m Basic Principle
T A[L];
= Array of data type T and length L
= Contiguously allocated region of L * sizeof (T) bytes

char string[12];

X xX+12
int val[5];
X X+4 X+8 xX+12 xX+16 x+20
double a[3];
| | |
X X+8 x+16 X+ 24
char *p[3]; | | | m
X X+4 X+8 xX+12

| | W o

X X+ 8 x+16 X+ 24

Array Access

m Basic Principle
T A[L];
= Array of data type T and length L
= |dentifier A can be used as a pointer to array element O: Type T*

int val[5]; 1 | S5 | 2]| 1 | 3
X x+4 X+8 x+12 x+16 x+20
m Reference Type Value
val[4] int 3
val int * X
val+l int * xX+4
&val[2] int * X+ 8
val[5] int ?7?
* (val+l) int 5

val + i int * X+4ij

Carnegie Mellon

Array Access in ASM Examples

Expression Type Value Assembly Code
E int * Xg movl %edx,%eax
E[0] int M[Xg 1] movl (%edx),%eax
E[1] int M[Xg+4 1] movl (%edx,%ecx,4),%eax
&E[2] int * Xg+8 leal 8(%edx),%eax
E+i-1 int * Xg+41-4 leal -4(%edx,%ecx,4),%eax
*(E+1-3) int M[Xg+41-12] |movl -12(%edx,%ecx,4),%eax
&E[1]-E int 1 movl %ecx,%eax

Xg Address

MI[] Value stored in address

Remember that A[1] is the same as *(A+1)

Carnegie Mellon

Array Example

#define ZLEN 5
typedef int zip dig[ZLEN];

zip digcmu = { 1, 5, 2, 1, 3 };
zip digmit = { 0, 2, 1, 3, 9 };
zip digucb={ 9, 4, 7, 2, 0 };
zip dig cmu; } 1 S 2 1 3

16 20 24 28 32 36
zip dig mit; 0 2 1 3 3

36 40 44 48 52 56
zip dig ucb; } 9 | 4 | 7 2 0

56 60 64 68 72 76

m Declaration “zip dig cmu” equivalentto “int cmu[5]”
m Example arrays were allocated in successive 20 byte blocks
" Not guaranteed to happen in general

Carnegie Mellon

Array Accessing Example

=
jon
N
=
jw

zip dig cmu;

16 20 24 28 32 36

int get digit
(zip dig z, int dig)
{

return z[dig];
} m Register $edx contains

starting address of array

IA32 m Register $eax contains
Sedx = z array index
%eax = dig m Desired digit at
movl (%edx,%eax,4),%eax # z[dig] A*%eax + Sedx

m Use memory reference
(%edx, Seax,4)

Array Loop Example (IA32)

void zincr(zip dig z) {
int i; B
for (1 = 0; i < ZLEN; i++)
z[1i]++;
}
edx = z
movl S0, %eax # %eax = i
.L4: # loop:
addl S1, (%edx, %eax,4) # z[i]++
addl $1, %eax # i++
cmpl $5, %eax # i:5
jne .L4 # if '=, goto loop

Pointer Loop Example (IA32)

: : : : void zincr v(zip dig z) ({
void zincr p(zip dig z) { oid *yz = Z:
int *zend = z+ZLEN; Hieds G o= ()

do {
(*2) ++;) o

. (*((int *) (vz+i)))++;
z ; |
: | = .
} while (z '= zend); } while (i '= ISIZE*ZLEN) ;

movl $0, %eax # i=0
.L8: # loop:
addl $1, (%edx, %eax) # Increment vz+i
addl $4, %eax # i+= 4
cmpl $20, %eax # Compare i:20
jne .L8 # if '=, goto loop

Carnegie Mellon

Nested Array Example

#define PCOUNT 4
zip dig pgh[PCOUNT] =
{{1, 5, 2, 0, 6},
{1, 5, 2, 1, 3 1},
{1, 5, 2, 1, 7},
{1, 5, 2, 2, 1 }};

zip dig
pagh[4];

76 96 116 136 156

m “zip dig pgh[4]” equivalentto “int pgh[4][5]”
= Variable pgh: array of 4 elements, allocated contiguously
= Each elementis an array of 5 int’s, allocated contiguously

m “Row-Major” ordering of all elements guaranteed

Carnegie Mellon

Multidimensional (Nested) Arrays

m Declaration
I A[R] [C];
= 2D array of datatype T

A[0][0] ¢ « o A[O][C-1]

" Rrows, Ccolumns . .

= Type T element requires K bytes
. A[R-1]1[0] e e e¢A[R-1][C-1]
m Array Size _ ~

= R*C*Kbytes

m Arrangement
= Row-Major Ordering

int A[R] [C];

A A A A A A
[0] e o o [0] [1] e o o [1] ° ° ° [R—l] e o o [R—l]
[0] [C-1]| [O] [C-1] [0] [C-1]

4*R*C Bytes

Carnegie Mellon

Nested Array Row Access

m Row Vectors
= A[i] isarray of C elements
= Each element of type T requires K bytes
= Starting addressA + | * (C* K)

int A[R][C];

e—— A[0] —— « Af1i] > « A[R-1]
A A A A A A
[0] eee [0] | o @ [i] eeoe [i] | @ ®© @ |[R-1]| eee |[R-1]
[0] [C-1] [0] [C-1] [0] [C-1]

.\ A+i*C*4 A+ (R-1) *C*4

Carnegie Mellon

Nested Array Row Access Code

int *get pgh zip(int index) #define PCOUNT 4
{ zip dig pgh[PCOUNT] =
return pgh[index]; {{1, 5, 2, 0, 6},
} {ll 5’ 2’ 1’ 3 }I
{1I 5’ 2’ 1’ 7 }I
{1, 5, 2, 2, 1 1}};

%eax = index
leal (%eax,%eax,4) ,%eax # 5 * index
leal pgh(,%eax,4) ,%eax # pgh + (20 * index)

m Row Vector
= pgh[index] isarrayof5int’s
= Starting address pgh+20*index

m |IA32 Code

" Computes and returns address
" Computeaspgh + 4* (index+4*index)

Carnegie Mellon

Nested Array Row Access

m Array Elements
= A[i] [j] is element of type T, which requires K bytes
" Address A + [*(C*K)+ j*K=A+(i*C+ j)*K

int A[R][C];

e—— A[0] —— « Af1i] > « A[R-1]
A A A A A
[0] oo [0] | o @ L) [i] oo o e o o |[R-1] oo [R-1]
[0] [C-1] [J] [0] [C-1]
A A+1*C*4 ‘ A+ (R-1) *C*4

A+i*C*4+9%4

Carnegie Mellon

Nested Array Element Access Code

int get pgh digit
(int index, int dig)
{
return pgh[index] [dig];

}

movl 8 (%ebp), %eax # index

leal (%eax,%eax,4), %eax # 5*index

addl 12 (%ebp), %eax # 5*index+dig

movl pgh(,%eax,4), %eax # offset 4* (5*index+digq)

m Array Elements
" pgh[index] [dig] isint
= Address:pgh + 20*index + 4*dig
= = pgh + 4*(5*index + diq)
m |IA32 Code
= Computes addresspgh + 4* ((index+4*index)+digqg)

Carnegie Mellon

Multi-Level Array Example

zip dig emu = { 1, 5, 2, 1, 3 }; m Variable univ denotes
zip dig mit = { 0, 2, 1, 3, 9 }; array of 3 elements
zip dig ucb = { 9, 4, 7, 2, 0 }; m Each element is a pointer
|
#define UCOUNT 3 4 bytes
int *univ[UCOUNT] = {mit, cmu, ucb}; m Each pointer points to array
of int’s
cmu
} 1 5 2 1 3
univ
16 20 24 28 32 36
160 —{ 36 mit
0 2 1 3 9

164 —| 16

36 40 44 48 52 56
-

56 60 64 68 72 76

lo
=
N
I
lo

Carnegie Mellon

Element Access in Multi-Level Array

int get univ digit
(int index, int dig)
{

return univ[index] [dig];

}

movl 8 (%ebp), %eax # index

movl univ(,%eax,4), %edx # p = univ[index]
movl 12 (%ebp), %eax # dig

movl $edx, %eax,4), %eax # pldig]

m Computation (IA32)

= Element access Mem[Mem[univ+4*index]+4*dig]
" Must do two memory reads

= First get pointer to row array

= Then access element within array

Carnegie Mellon

Array Element Accesses

Nested array

Multi-level array

int get pgh digit
(int index, int dig)

{
return pgh[index] [dig];

}

int get univ digit
(int index, int dig)

{

return univ[index] [dig];

}

76 96 116 136 156

univ 1 1 T T T 1
160 ——i 36 mit T T I 5 1
164 — 16 i T T T 1 1
168 —— 56 .\ X

Accesses looks similar in C, but addresses very different:

Mem[pgh+20*index+4*dig]

Mem[Mem[univ+4*index]+4*dig]

Carnegie Mellon

N X N Matrix Code

m Fixed dimensions

= Know value of N at
compile time

m Variable dimensions,
explicit indexing
" Traditional way to

implement dynamic
arrays

m Variable dimensions,
implicit indexing
= Now supported by gcc

#define N 16
typedef int fix matrix[N] [N];
/* Get element a[i] [§] */
int fix ele

(fix matrix a, int i, int j)
{

return a[i] []j];

}

#define IDX(n, i, jJj)
/* Get element a[i][j] */
int vec_ele

(int n, int *a, int i, int j)
{

return a[IDX(n,i,j)];

}

((£)*(n)+(3))

/* Get element a[i][j] */
int var ele

(int n, int a[n][n], int i, int j)

{

return al[i] [J];

}

—

Carnegie Mellon

16 X 16 Matrix Access

m Array Elements
" Address A + i*(C*K)+ j*K
"= C=16,K=4

/* Get element a[i][j] */
int fix ele(fix matrix a, int i, int j) {
return a[i] [j];

}
movl 12 (%ebp), %edx # i
sall $6, %edx # i*64
movl 16 (%ebp), %eax # 3
sall $2, %eax # j*4
addl 8 (%ebp), %eax # a + j*4
movl ($eax,%edx), %eax # *(a + j*4 + i*64)

Carnegie Mellon

n X n Matrix Access

m Array Elements
" Address A + i*(C*K)+ j*K
" C=n,K=4

/* Get element a[i][j] */
int var ele(int n, int a[n][n], int i, int j) {
return a[i][]];

}

movl 8 (%ebp), %eax # n

sall $2, %eax # n*4

movl %eax, %edx # n*4

imull 16 (%ebp), %edx # i*n*4

movl 20 (%ebp), %eax # 3

sall $2, %eax # J*4

addl 12 (%ebp), %eax # a + j*4

movl (%eax,%edx), %eax # *(a + j*4 + i*n*4)

Optimizing Fixed Array Access

a <— j-th column

f#fdefine N 16
typedef int fix matrix[N] [N];

. /* Retrieve column j from array */
m Computation void fix column
= Step through all elements in (fix_matrix a, int j, int *dest)
column j {
L . int i;
m Optimization for (i = 0; i < N; i++)
= Retrieving successive dest[i] = a[1][3]]’
elements from single }

column

Optimizing Fixed Array Access

= Optimization /* Retrieve column j from array */
= Compute ajp = &ali][j] void fix column
(fix matrix a, int j, int *dest)

= |nitially = a + 4%j {

= Increment by 4*N int i:

. for (i = 0; i < N; i++)
e L
$ecx ajp }
sebx dest
sedx i

.L8: # loop:
movl (%ecx), %eax # Read *ajp
movl %eax, (%ebx,%edx,4) # Save in dest[i]
addl $1, %edx # i++
addl $64, %ecx # ajp += 4*N
cmpl $16, %edx # i:N
jne .L8 # if '=, goto loop

Carnegie Mellon

Optimizing Variable Array Access

= Compute ajp = &ali][j]
« Initially = a + 4*j
= Increment by 4*n

secx ajp
sedi dest
Sedx i
%ebx 4*n

$esi n

/* Retrieve column j from array */
void var column
(int n, int a[n][n],
int j, int *dest)
{
int 1i;
for (i = 0; i < n; i++)
dest[i] = al[il[j];

.L18:
movl %ecx), %eax
movl $%eax,
addl $1, %edx
addl S$Sebx, %ecx
cmpl $edx, %esi
jg .L18

%edi, %edx,4) #

loop:
Read *ajp
Save in dest[i]

i+t

ajp += 4*n

n:i

if >, goto loop

Carnegie Mellon

Today

m Structures
= Allocation
= Access

Carnegie Mellon

Structure Allocation

truct

° iﬁi a][:;:(]:.{ Memory Layout
int i,' a i n
struct rec *n;

}; 0 12 16 20

m Concept

= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

Carnegie Mellon

Structure Access

r r+l2
struct rec {
int a[3]; v v
int i,’ a i n
struct rec *n;
}; 0 12 16 20

m Accessing Structure Member

= Pointer indicates first byte of structure
= Access elements with offsets

void IA32 Assembly
set_i(étruct rec *r, ¥ Sedx — val
int val) .
{ # %eax = r
r->i = val: movl %edx, 12 (%eax)

Mem[r+12] = val
}

Carnegie Mellon

Generating Pointer to Structure Member

r r+idx*4
struct rec {
int a[3];) |
. . a iln
int 1;
struct rec *n; 0 12 16 20
}s;
m Generating Pointer to int *get ap
(struct rec *r, int idx)
Array Element {
= Offset of each structure return &r->a[idx];
member determined at }
compile time
= Arguments movl 12 (%ebp) , %eax # Get idx
. Mem[5ebp+8]: sall $2, %eax # idx*4
' addl 8(%ebp), %eax # r+idx*4
= Mem[%ebp+12]: idx

Carnegie Mellon

struct rec {
int a[3];
int 1i;
struct rec *n;

Following Linked List

m CCode }
void set val _ !
(struct rec *r, int wval) a ll n
{ o | 12 1620
while (r) {
int i = r->i; Element 1
r->a[i] = val;
r = z->n;
\ } yedx r
secx val
.L17: # loop:
movl 12 (%edx), %eax ¥ r->i
movl %ecx, (%edx,%eax,4) # r->a[i] = wval
movl 16 (%edx), %edx # r = r->n
testl %edx, %edx # Test r
jne .L17 # If '= 0 goto loop

Carnegie Mellon

Summary

m Procedures in x86-64
= Stack frame is relative to stack pointer
= Parameters passed in registers

m Arrays
" One-dimensional

= Multi-dimensional (nested)
= Multi-level

m Structures
= Allocation
= Access

