
Carnegie Mellon

1

Machine-­‐Level	
 Programming	
 IV:	

x86-­‐64	
 Procedures,	
 Data	

15-­‐213/18-­‐243,	
 Spring	
 2014	

8th	
 Lecture,	
 Feb.	
 7th	
 	

Instructors:	
 	

Anthony	
 Rowe,	
 Seth	
 Goldstein	
 and	
 Gregory	
 Kesden	

Carnegie Mellon

2

Today	

¢  Procedures	
 (x86-­‐64)	

¢  Arrays	

§  One-­‐dimensional	

§  MulJ-­‐dimensional	
 (nested)	

§  MulJ-­‐level	

¢  Structures	

§  AllocaJon	

§  Access	

Carnegie Mellon

3

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-­‐64	
 Integer	
 Registers	

§  Twice	
 the	
 number	
 of	
 registers	

§  Accessible	
 as	
 8,	
 16,	
 32,	
 64	
 bits	

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

Carnegie Mellon

4

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-­‐64	
 Integer	
 Registers:	
 	

Usage	
 ConvenHons	

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee	
 saved	
 Callee	
 saved	

Callee	
 saved	

Callee	
 saved	

Callee	
 saved	

Caller	
 saved	

Callee	
 saved	

Stack	
 pointer	

Caller	
 Saved	

Return	
 value	

Argument	
 #4	

Argument	
 #1	

Argument	
 #3	

Argument	
 #2	

Argument	
 #6	

Argument	
 #5	

Carnegie Mellon

5

x86-­‐64	
 Registers	

¢  Arguments	
 passed	
 to	
 funcHons	
 via	
 registers	

§  If	
 more	
 than	
 6	
 integral	
 parameters,	
 then	
 pass	
 rest	
 on	
 stack	

§  These	
 registers	
 can	
 be	
 used	
 as	
 caller-­‐saved	
 as	
 well	

¢  All	
 references	
 to	
 stack	
 frame	
 via	
 stack	
 pointer	

§  Eliminates	
 need	
 to	
 update	
 %ebp/%rbp

¢  Other	
 Registers	

§  6	
 callee	
 saved	

§  2	
 caller	
 saved	

§  1	
 return	
 value	
 (also	
 usable	
 as	
 caller	
 saved)	

§  1	
 special	
 (stack	
 pointer)	

Carnegie Mellon

6

x86-­‐64	
 Long	
 Swap	

¢  Operands	
 passed	
 in	
 registers	

§  First	
 (xp)	
 in	
 %rdi,	
 second	
 (yp)	
 in	
 %rsi
§  64-­‐bit	
 pointers	

¢  No	
 stack	
 operaHons	
 required	
 (except	
 ret)	

¢  Avoiding	
 stack	

§  Can	
 hold	
 all	
 local	
 informaJon	
 in	
 registers	

void swap_l(long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 movq (%rdi), %rdx
 movq (%rsi), %rax
 movq %rax, (%rdi)
 movq %rdx, (%rsi)
 ret

rtn	
 Ptr	
 %rsp

No	
 stack	

frame	

Carnegie Mellon

7

x86-­‐64	
 Locals	
 in	
 the	
 Red	
 Zone	

¢  Avoiding	
 Stack	
 Pointer	
 Change	

§  Can	
 hold	
 all	
 informaJon	
 within	
 small	

window	
 beyond	
 stack	
 pointer	

/* Swap, using local array */
void swap_a(long *xp, long *yp)
{
 volatile long loc[2];
 loc[0] = *xp;
 loc[1] = *yp;
 *xp = loc[1];
 *yp = loc[0];
}

swap_a:
 movq (%rdi), %rax
 movq %rax, -24(%rsp)
 movq (%rsi), %rax
 movq %rax, -16(%rsp)
 movq -16(%rsp), %rax
 movq %rax, (%rdi)
 movq -24(%rsp), %rax
 movq %rax, (%rsi)
 ret

rtn	
 Ptr	

unused	

%rsp

−8	

loc[1]

loc[0]

−16	

−24	

Carnegie Mellon

8

x86-­‐64	
 NonLeaf	
 without	
 Stack	
 Frame	

¢  No	
 values	
 held	
 while	
 swap	
 being	

invoked	

¢  No	
 callee	
 save	
 registers	
 needed	

¢  rep	
 instrucHon	
 inserted	
 as	
 no-­‐op	

§  Based	
 on	
 recommendaJon	
 from	
 AMD	

/* Swap a[i] & a[i+1] */
void swap_ele(long a[], int i)
{
 swap(&a[i], &a[i+1]);
}

swap_ele:
 movslq %esi,%rsi # Sign extend i

 leaq 8(%rdi,%rsi,8), %rax # &a[i+1]
 leaq (%rdi,%rsi,8), %rdi # &a[i] (1st arg)
 movq %rax, %rsi # (2nd arg)
 call swap
 rep # No-op
 ret

Carnegie Mellon

9

x86-­‐64	
 Stack	
 Frame	
 Example	

¢  Keeps	
 values	
 of	
 &a[i]	
 and	

&a[i+1]	
 in	
 callee	
 save	

registers	

¢  Must	
 set	
 up	
 stack	
 frame	
 to	

save	
 these	
 registers	

long sum = 0;
/* Swap a[i] & a[i+1] */
void swap_ele_su
 (long a[], int i)
{
 swap(&a[i], &a[i+1]);
 sum += (a[i]*a[i+1]);
}

swap_ele_su:
 movq %rbx, -16(%rsp)

 movq %rbp, -8(%rsp)
 subq $16, %rsp
 movslq %esi,%rax
 leaq 8(%rdi,%rax,8), %rbx
 leaq (%rdi,%rax,8), %rbp
 movq %rbx, %rsi
 movq %rbp, %rdi
 call swap
 movq (%rbx), %rax
 imulq (%rbp), %rax
 addq %rax, sum(%rip)
 movq (%rsp), %rbx
 movq 8(%rsp), %rbp
 addq $16, %rsp
 ret

Carnegie Mellon

10

Understanding	
 x86-­‐64	
 Stack	
 Frame	

swap_ele_su:

 movq %rbx, -16(%rsp) # Save %rbx
 movq %rbp, -8(%rsp) # Save %rbp
 subq $16, %rsp # Allocate stack frame
 movslq %esi,%rax # Extend i
 leaq 8(%rdi,%rax,8), %rbx # &a[i+1] (callee save)
 leaq (%rdi,%rax,8), %rbp # &a[i] (callee save)
 movq %rbx, %rsi # 2nd argument
 movq %rbp, %rdi # 1st argument
 call swap
 movq (%rbx), %rax # Get a[i+1]
 imulq (%rbp), %rax # Multiply by a[i]
 addq %rax, sum(%rip) # Add to sum
 movq (%rsp), %rbx # Restore %rbx
 movq 8(%rsp), %rbp # Restore %rbp
 addq $16, %rsp # Deallocate frame
 ret

Carnegie Mellon

11

Understanding	
 x86-­‐64	
 Stack	
 Frame	

rtn	
 addr	

%rbp

%rsp

−8	

%rbx −16	

rtn	
 addr	

%rbp

%rsp

+8	

%rbx

 movq %rbx, -16(%rsp) # Save %rbx
 movq %rbp, -8(%rsp) # Save %rbp

 subq $16, %rsp # Allocate stack frame

 movq (%rsp), %rbx # Restore %rbx
 movq 8(%rsp), %rbp # Restore %rbp

 addq $16, %rsp # Deallocate frame

l l l

Carnegie Mellon

12

InteresHng	
 Features	
 of	
 Stack	
 Frame	

¢  Allocate	
 enHre	
 frame	
 at	
 once	

§  All	
 stack	
 accesses	
 can	
 be	
 relaJve	
 to	
 %rsp
§  Do	
 by	
 decremenJng	
 stack	
 pointer	

§  Can	
 delay	
 allocaJon,	
 since	
 safe	
 to	
 temporarily	
 use	
 red	
 zone	

¢  Simple	
 deallocaHon	

§  Increment	
 stack	
 pointer	

§  No	
 base/frame	
 pointer	
 needed	

Carnegie Mellon

13

x86-­‐64	
 Procedure	
 Summary	

¢  Heavy	
 use	
 of	
 registers	

§  Parameter	
 passing	

§  More	
 temporaries	
 since	
 more	
 registers	

¢  Minimal	
 use	
 of	
 stack	

§  SomeJmes	
 none	

§  Allocate/deallocate	
 enJre	
 block	

¢  Many	
 tricky	
 opHmizaHons	

§  What	
 kind	
 of	
 stack	
 frame	
 to	
 use	

§  Various	
 allocaJon	
 techniques	

Carnegie Mellon

14

Today	

¢  Procedures	
 (x86-­‐64)	

¢  Arrays	

§  One-­‐dimensional	

§  MulJ-­‐dimensional	
 (nested)	

§  MulJ-­‐level	

¢  Structures	

Carnegie Mellon

15

Basic	
 Data	
 Types	

¢  Integral	

§  Stored	
 &	
 operated	
 on	
 in	
 general	
 (integer)	
 registers	

§  Signed	
 vs.	
 unsigned	
 depends	
 on	
 instrucJons	
 used	

Intel 	
 ASM 	
 Bytes 	
 C	

byte 	
 b 	
 1 	
 [unsigned] char
word 	
 w 	
 2 	
 [unsigned] short	

double	
 word 	
 l 	
 4 	
 [unsigned] int
quad	
 word 	
 q 	
 8 	
 [unsigned] long int (x86-­‐64)	

¢ FloaHng	
 Point	

§  Stored	
 &	
 operated	
 on	
 in	
 floaJng	
 point	
 registers	

Intel 	
 ASM 	
 Bytes 	
 C	

Single 	
 s 	
 4 	
 float
Double 	
 l 	
 8 	
 double
Extended 	
 t 	
 10/12/16 	
 long double

Carnegie Mellon

16

Array	
 AllocaHon	

¢  Basic	
 Principle	

T	
 	
 A[L];	

§  Array	
 of	
 data	
 type	
 T	
 and	
 length	
 L	

§  ConJguously	
 allocated	
 region	
 of	
 L	
 *	
 sizeof(T)	
 bytes	

char string[12];

x	
 x	
 +	
 12	

int val[5];

x	
 x	
 +	
 4	
 x	
 +	
 8	
 x	
 +	
 12	
 x	
 +	
 16	
 x	
 +	
 20	

double a[3];

x	
 +	
 24	
 x	
 x	
 +	
 8	
 x	
 +	
 16	

char *p[3];

x	
 x	
 +	
 8	
 x	
 +	
 16	
 x	
 +	
 24	

x	
 x	
 +	
 4	
 x	
 +	
 8	
 x	
 +	
 12	

IA32	

x86-­‐64	

Carnegie Mellon

17

Array	
 Access	

¢ Basic	
 Principle	

T	
 	
 A[L];	

§  Array	
 of	
 data	
 type	
 T	
 and	
 length	
 L	

§  IdenJfier	
 A	
 can	
 be	
 used	
 as	
 a	
 pointer	
 to	
 array	
 element	
 0:	
 Type	
 T*	

¢ Reference 	
 Type 	
 Value	

val[4] int 3	

val int * x	

val+1 	
 int * x	
 +	
 4	

&val[2] 	
 int * x	
 +	
 8	

val[5] 	
 int ??	

*(val+1) 	
 int 5	

val + i 	
 int * x	
 +	
 4	
 i	

int val[5]; 1	
 5	
 2	
 1	
 3	

x	
 x	
 +	
 4	
 x	
 +	
 8	
 x	
 +	
 12	
 x	
 +	
 16	
 x	
 +	
 20	

Carnegie Mellon

Array	
 Access	
 in	
 ASM	
 Examples	

18

Expression Type Value Assembly Code
E! int *! XE	

 movl %edx,%eax!

E[0]! int! M[XE]	

 movl (%edx),%eax!

E[i]! int! M[XE+4 i]	

 movl (%edx,%ecx,4),%eax!

&E[2]! int *! XE + 8	

 leal 8(%edx),%eax!

E+i-1! int *! XE + 4 i – 4	

 leal -4(%edx,%ecx,4),%eax!

*(E+i-3)! int ! M[XE+ 4 i – 12]	

 movl -12(%edx,%ecx,4),%eax !

&E[i]-E! int! i	

 movl %ecx,%eax!

XE 	

Address 	

M [] 	

 Value stored in address	

	

Remember that A[i] is the same as *(A+i)	

Carnegie Mellon

19

Array	
 Example	

¢  DeclaraHon	
 “zip_dig cmu”	
 equivalent	
 to	
 “int cmu[5]”	

¢  Example	
 arrays	
 were	
 allocated	
 in	
 successive	
 20	
 byte	
 blocks	

§  Not	
 guaranteed	
 to	
 happen	
 in	
 general	

#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1	
 5	
 2	
 1	
 3	

16	
 20	
 24	
 28	
 32	
 36	

zip_dig mit; 0	
 2	
 1	
 3	
 9	

36	
 40	
 44	
 48	
 52	
 56	

zip_dig ucb; 9	
 4	
 7	
 2	
 0	

56	
 60	
 64	
 68	
 72	
 76	

Carnegie Mellon

20

Array	
 Accessing	
 Example	

n  Register	
 %edx	
 contains	

starHng	
 address	
 of	
 array	

n  Register	
 %eax	
 contains	
 	

array	
 index	

n  Desired	
 digit	
 at	
 	

4*%eax + %edx	

n  Use	
 memory	
 reference	

(%edx,%eax,4)	

int get_digit
 (zip_dig z, int dig)
{
 return z[dig];
}

 # %edx = z
 # %eax = dig
 movl (%edx,%eax,4),%eax # z[dig]

IA32	

zip_dig cmu; 1	
 5	
 2	
 1	
 3	

16	
 20	
 24	
 28	
 32	
 36	

Carnegie Mellon

21

 # edx = z
 movl $0, %eax # %eax = i

.L4: # loop:
 addl $1, (%edx,%eax,4) # z[i]++
 addl $1, %eax # i++
 cmpl $5, %eax # i:5
 jne .L4 # if !=, goto loop

Array	
 Loop	
 Example	
 (IA32)	

void zincr(zip_dig z) {
 int i;
 for (i = 0; i < ZLEN; i++)
 z[i]++;
}

Carnegie Mellon

22

Pointer	
 Loop	
 Example	
 (IA32)	

void zincr_p(zip_dig z) {
 int *zend = z+ZLEN;
 do {
 (*z)++;
 z++;
 } while (z != zend);
}

void zincr_v(zip_dig z) {
 void *vz = z;
 int i = 0;
 do {
 (*((int *) (vz+i)))++;
 i += ISIZE;
 } while (i != ISIZE*ZLEN);
}

 # edx = z = vz
 movl $0, %eax # i = 0

.L8: # loop:
 addl $1, (%edx,%eax) # Increment vz+i
 addl $4, %eax # i += 4
 cmpl $20, %eax # Compare i:20
 jne .L8 # if !=, goto loop

Carnegie Mellon

23

Nested	
 Array	
 Example	

¢  “zip_dig pgh[4]”	
 equivalent	
 to	
 “int pgh[4][5]”	

§  Variable	
 pgh:	
 array	
 of	
 4	
 elements,	
 allocated	
 conJguously	

§  Each	
 element	
 is	
 an	
 array	
 of	
 5	
 int’s,	
 allocated	
 conJguously	

¢  “Row-­‐Major”	
 ordering	
 of	
 all	
 elements	
 guaranteed	

#define PCOUNT 4
zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};

zip_dig
pgh[4];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Carnegie Mellon

24

MulHdimensional	
 (Nested)	
 Arrays	

¢  DeclaraHon	

T	
 	
 	
 A[R][C];	

§  2D	
 array	
 of	
 data	
 type	
 T	

§  R	
 rows,	
 C	
 columns	

§  Type	
 T	
 element	
 requires	
 K	
 bytes	

¢  Array	
 Size	

§  R	
 *	
 C	
 *	
 K	
 bytes	

¢  Arrangement	

§  Row-­‐Major	
 Ordering	

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A

[0]
[0]

A
[0]
[C-1]

• • •
A

[1]
[0]

A
[1]
[C-1]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C	
 	
 Bytes	

Carnegie Mellon

25

•	
 	
 •	
 	
 •	

Nested	
 Array	
 Row	
 Access	

¢  Row	
 Vectors	

§  	
 A[i]	
 is	
 array	
 of	
 C	
 elements	

§  Each	
 element	
 of	
 type	
 T	
 requires	
 K	
 bytes	

§  StarJng	
 address	
 A + 	
 i	
 *	
 (C	
 *	
 K)	

•	
 •	
 •	

A

[i]
[0]

A
[i]
[C-1]

A[i]	

•	
 •	
 •	

A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]	

•	
 	
 •	
 	
 •	

A

•	
 •	
 •	

A

[0]
[0]

A
[0]
[C-1]

A[0]	

A+i*C*4 A+(R-1)*C*4

int A[R][C];

Carnegie Mellon

26

Nested	
 Array	
 Row	
 Access	
 Code	

¢  Row	
 Vector	

§  	
 pgh[index]	
 is	
 array	
 of	
 5	
 int’s	

§  StarJng	
 address	
 pgh+20*index

¢  IA32	
 Code	

§  Computes	
 and	
 returns	
 address	

§  Compute	
 as	
 pgh + 4*(index+4*index)

int *get_pgh_zip(int index)
{
 return pgh[index];
}

 # %eax = index
 leal (%eax,%eax,4),%eax # 5 * index
 leal pgh(,%eax,4),%eax # pgh + (20 * index)

#define PCOUNT 4
zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};

Carnegie Mellon

27

•	
 	
 •	
 	
 •	

Nested	
 Array	
 Row	
 Access	

¢  Array	
 Elements	

§  	
 A[i][j]	
 is	
 element	
 of	
 type	
 T,	
 which	
 requires	
 K	
 bytes
§  Address	
 	
 A + i	
 *	
 (C	
 *	
 K)	
 +	
 	
 j	
 *	
 K	
 =	
 A	
 +	
 (i	
 *	
 C	
 +	
 	
 j)*	
 K	

	
 •	
 •	
 •	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 •	
 •	
 •	

A

[i]
[j]

A[i]	

•	
 •	
 •	

A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]	

•	
 	
 •	
 	
 •	

A

•	
 •	
 •	

A

[0]
[0]

A
[0]
[C-1]

A[0]	

A+i*C*4 A+(R-1)*C*4

int A[R][C];

A+i*C*4+j*4

Carnegie Mellon

28

Nested	
 Array	
 Element	
 Access	
 Code	

¢  Array	
 Elements	

§  	
 pgh[index][dig]	
 is	
 int
§  Address:	
 pgh + 20*index + 4*dig

§  =	
 	
 	
 pgh + 4*(5*index + dig)

¢  IA32	
 Code	

§  Computes	
 address	
 pgh + 4*((index+4*index)+dig)	

int get_pgh_digit
 (int index, int dig)
{
 return pgh[index][dig];
}

 movl 8(%ebp), %eax # index
 leal (%eax,%eax,4), %eax # 5*index
 addl 12(%ebp), %eax # 5*index+dig
 movl pgh(,%eax,4), %eax # offset 4*(5*index+dig)

Carnegie Mellon

29

MulH-­‐Level	
 Array	
 Example	

¢  Variable	
 univ	
 denotes	

array	
 of	
 3	
 elements	

¢  Each	
 element	
 is	
 a	
 pointer	

§  4	
 bytes	

¢  Each	
 pointer	
 points	
 to	
 array	

of	
 int’s	
 	

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};

36 160

16

56

164

168

univ

cmu

mit

ucb

1	
 5	
 2	
 1	
 3	

16	
 20	
 24	
 28	
 32	
 36	

0	
 2	
 1	
 3	
 9	

36	
 40	
 44	
 48	
 52	
 56	

9	
 4	
 7	
 2	
 0	

56	
 60	
 64	
 68	
 72	
 76	

Carnegie Mellon

30

Element	
 Access	
 in	
 MulH-­‐Level	
 Array	

¢  ComputaHon	
 (IA32)	

§  Element	
 access	
 Mem[Mem[univ+4*index]+4*dig]
§  Must	
 do	
 two	
 memory	
 reads	

§  First	
 get	
 pointer	
 to	
 row	
 array	

§  Then	
 access	
 element	
 within	
 array	

 movl 8(%ebp), %eax # index
 movl univ(,%eax,4), %edx # p = univ[index]
 movl 12(%ebp), %eax # dig
 movl (%edx,%eax,4), %eax # p[dig]

int get_univ_digit
 (int index, int dig)
{
 return univ[index][dig];
}

Carnegie Mellon

31

Array	
 Element	
 Accesses	

int get_pgh_digit
 (int index, int dig)
{
 return pgh[index][dig];
}

int get_univ_digit
 (int index, int dig)
{
 return univ[index][dig];
}

Nested	
 array	
 MulH-­‐level	
 array	

Accesses	
 looks	
 similar	
 in	
 C,	
 but	
 addresses	
 very	
 different:	
 	

Mem[pgh+20*index+4*dig] Mem[Mem[univ+4*index]+4*dig]

Carnegie Mellon

32

N	
 X	
 N	
 Matrix	
 Code	

¢  Fixed	
 dimensions	

§  Know	
 value	
 of	
 N	
 at	

compile	
 Jme	

¢  Variable	
 dimensions,	

explicit	
 indexing	

§  TradiJonal	
 way	
 to	

implement	
 dynamic	

arrays	

¢  Variable	
 dimensions,	

implicit	
 indexing	

§  Now	
 supported	
 by	
 gcc	

#define N 16
typedef int fix_matrix[N][N];
/* Get element a[i][j] */
int fix_ele
 (fix_matrix a, int i, int j)
{
 return a[i][j];
}

#define IDX(n, i, j) ((i)*(n)+(j))
/* Get element a[i][j] */
int vec_ele
 (int n, int *a, int i, int j)
{
 return a[IDX(n,i,j)];
}

/* Get element a[i][j] */
int var_ele
 (int n, int a[n][n], int i, int j)
{
 return a[i][j];
}

Carnegie Mellon

16	
 X	
 16	
 Matrix	
 Access	

33

/* Get element a[i][j] */
int fix_ele(fix_matrix a, int i, int j) {
 return a[i][j];
}

 movl 12(%ebp), %edx # i
 sall $6, %edx # i*64
 movl 16(%ebp), %eax # j
 sall $2, %eax # j*4
 addl 8(%ebp), %eax # a + j*4
 movl (%eax,%edx), %eax # *(a + j*4 + i*64)

¢  Array	
 Elements	

§  Address	
 	
 A + i	
 *	
 (C	
 *	
 K)	
 +	
 	
 j	
 *	
 K	

§  C	
 =	
 16,	
 K	
 =	
 4	

Carnegie Mellon

n	
 X	
 n	
 Matrix	
 Access	

34

/* Get element a[i][j] */
int var_ele(int n, int a[n][n], int i, int j) {
 return a[i][j];
}

 movl 8(%ebp), %eax # n
 sall $2, %eax # n*4
 movl %eax, %edx # n*4
 imull 16(%ebp), %edx # i*n*4
 movl 20(%ebp), %eax # j
 sall $2, %eax # j*4
 addl 12(%ebp), %eax # a + j*4
 movl (%eax,%edx), %eax # *(a + j*4 + i*n*4)

¢  Array	
 Elements	

§  Address	
 	
 A + i	
 *	
 (C	
 *	
 K)	
 +	
 	
 j	
 *	
 K	

§  C	
 =	
 n,	
 K	
 =	
 4	

Carnegie Mellon

35

OpHmizing	
 Fixed	
 Array	
 Access	

¢  ComputaHon	

§  Step	
 through	
 all	
 elements	
 in	

column	
 j	

¢  OpHmizaHon	

§  Retrieving	
 successive	

elements	
 from	
 single	

column	

#define N 16
typedef int fix_matrix[N][N];

/* Retrieve column j from array */
void fix_column
 (fix_matrix a, int j, int *dest)
{
 int i;
 for (i = 0; i < N; i++)
 dest[i] = a[i][j];
}

a j-­‐th	
 column	

Carnegie Mellon

36

OpHmizing	
 Fixed	
 Array	
 Access	

¢  OpHmizaHon	

§  Compute	
 ajp	
 =	
 &a[i][j]	

§  IniJally	
 =	
 a	
 +	
 4*j	

§  Increment	
 by	
 4*N	

/* Retrieve column j from array */
void fix_column
 (fix_matrix a, int j, int *dest)
{
 int i;
 for (i = 0; i < N; i++)
 dest[i] = a[i][j];
}

.L8: # loop:
 movl (%ecx), %eax # Read *ajp
 movl %eax, (%ebx,%edx,4) # Save in dest[i]
 addl $1, %edx # i++
 addl $64, %ecx # ajp += 4*N
 cmpl $16, %edx # i:N
 jne .L8 # if !=, goto loop

Register	
 Value	

%ecx ajp

%ebx dest

%edx i

Carnegie Mellon

37

OpHmizing	
 Variable	
 Array	
 Access	

§  Compute	
 ajp	
 =	
 &a[i][j]	

§  IniJally	
 =	
 a	
 +	
 4*j	

§  Increment	
 by	
 4*n	

/* Retrieve column j from array */
void var_column
 (int n, int a[n][n],
 int j, int *dest)
{
 int i;
 for (i = 0; i < n; i++)
 dest[i] = a[i][j];
}

.L18: # loop:
 movl (%ecx), %eax # Read *ajp
 movl %eax, (%edi,%edx,4) # Save in dest[i]
 addl $1, %edx # i++
 addl $ebx, %ecx # ajp += 4*n
 cmpl $edx, %esi # n:i
 jg .L18 # if >, goto loop

Register	
 Value	

%ecx ajp

%edi dest

%edx i

%ebx 4*n

%esi n

Carnegie Mellon

38

Today	

¢  Procedures	
 (x86-­‐64)	

¢  Arrays	

§  One-­‐dimensional	

§  MulJ-­‐dimensional	
 (nested)	

§  MulJ-­‐level	

¢  Structures	

§  AllocaJon	

§  Access	

Carnegie Mellon

39

struct rec {
 int a[3];
 int i;
 struct rec *n;
};

Structure	
 AllocaHon	

¢  Concept	

§  ConJguously-­‐allocated	
 region	
 of	
 memory	

§  Refer	
 to	
 members	
 within	
 structure	
 by	
 names	

§  Members	
 may	
 be	
 of	
 different	
 types	

Memory	
 Layout	

i a n

0 12 16 20

Carnegie Mellon

40

struct rec {
 int a[3];
 int i;
 struct rec *n;
};

IA32	
 Assembly	

 # %edx = val
 # %eax = r
 movl %edx, 12(%eax) # Mem[r+12] = val

void
set_i(struct rec *r,
 int val)
{
 r->i = val;
}

Structure	
 Access	

¢  Accessing	
 Structure	
 Member	

§  Pointer	
 indicates	
 first	
 byte	
 of	
 structure	

§  Access	
 elements	
 with	
 offsets	

i a n

0 12 16 20

r+12 r

Carnegie Mellon

41

 movl 12(%ebp), %eax # Get idx
 sall $2, %eax # idx*4
 addl 8(%ebp), %eax # r+idx*4

int *get_ap
 (struct rec *r, int idx)
{
 return &r->a[idx];
}

GeneraHng	
 Pointer	
 to	
 Structure	
 Member	

¢  GeneraHng	
 Pointer	
 to	

Array	
 Element	

§  Offset	
 of	
 each	
 structure	

member	
 determined	
 at	

compile	
 Jme	

§  Arguments	

§  Mem[%ebp+8]:	
 r
§  Mem[%ebp+12]:	
 idx

r+idx*4 r

i a n

0 12 16 20

struct rec {
 int a[3];
 int i;
 struct rec *n;
};

Carnegie Mellon

42

 .L17: # loop:
 movl 12(%edx), %eax # r->i
 movl %ecx, (%edx,%eax,4) # r->a[i] = val
 movl 16(%edx), %edx # r = r->n
 testl %edx, %edx # Test r
 jne .L17 # If != 0 goto loop

void set_val
 (struct rec *r, int val)
{
 while (r) {
 int i = r->i;
 r->a[i] = val;
 r = r->n;
 }
}

Following	
 Linked	
 List	

¢  C	
 Code	

struct rec {
 int a[3];
 int i;
 struct rec *n;
};

i a n

0 12 16 20

Element	
 i	

Register	
 Value	

%edx r

%ecx val

Carnegie Mellon

43

Summary	

¢  Procedures	
 in	
 x86-­‐64	

§  Stack	
 frame	
 is	
 relaJve	
 to	
 stack	
 pointer	

§  Parameters	
 passed	
 in	
 registers	

¢  Arrays	

§  One-­‐dimensional	

§  MulJ-­‐dimensional	
 (nested)	

§  MulJ-­‐level	

¢  Structures	

§  AllocaJon	

§  Access	

