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Today	
  
¢  Procedures	
  (x86-­‐64)	
  
¢  Arrays	
  

§  One-­‐dimensional	
  
§  MulJ-­‐dimensional	
  (nested)	
  
§  MulJ-­‐level	
  

¢  Structures	
  
§  AllocaJon	
  
§  Access	
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%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rsp 

%rbp 

x86-­‐64	
  Integer	
  Registers	
  

§  Twice	
  the	
  number	
  of	
  registers	
  
§  Accessible	
  as	
  8,	
  16,	
  32,	
  64	
  bits	
  

%eax 

%ebx 

%ecx 

%edx 

%esi 

%edi 

%esp 

%ebp 

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 

%r8d 

%r9d 

%r10d 

%r11d 

%r12d 

%r13d 

%r14d 

%r15d 
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%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rsp 

%rbp 

x86-­‐64	
  Integer	
  Registers:	
  	
  
Usage	
  ConvenHons	
  

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 Callee	
  saved	
   Callee	
  saved	
  

Callee	
  saved	
  

Callee	
  saved	
  

Callee	
  saved	
  

Caller	
  saved	
  

Callee	
  saved	
  

Stack	
  pointer	
  

Caller	
  Saved	
  

Return	
  value	
  

Argument	
  #4	
  

Argument	
  #1	
  

Argument	
  #3	
  

Argument	
  #2	
  

Argument	
  #6	
  

Argument	
  #5	
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x86-­‐64	
  Registers	
  
¢  Arguments	
  passed	
  to	
  funcHons	
  via	
  registers	
  

§  If	
  more	
  than	
  6	
  integral	
  parameters,	
  then	
  pass	
  rest	
  on	
  stack	
  
§  These	
  registers	
  can	
  be	
  used	
  as	
  caller-­‐saved	
  as	
  well	
  

¢  All	
  references	
  to	
  stack	
  frame	
  via	
  stack	
  pointer	
  
§  Eliminates	
  need	
  to	
  update	
  %ebp/%rbp 

¢  Other	
  Registers	
  
§  6	
  callee	
  saved	
  
§  2	
  caller	
  saved	
  
§  1	
  return	
  value	
  (also	
  usable	
  as	
  caller	
  saved)	
  
§  1	
  special	
  (stack	
  pointer)	
  



Carnegie Mellon 

6 

x86-­‐64	
  Long	
  Swap	
  

¢  Operands	
  passed	
  in	
  registers	
  
§  First	
  (xp)	
  in	
  %rdi,	
  second	
  (yp)	
  in	
  %rsi 
§  64-­‐bit	
  pointers	
  

¢  No	
  stack	
  operaHons	
  required	
  (except	
  ret)	
  
¢  Avoiding	
  stack	
  

§  Can	
  hold	
  all	
  local	
  informaJon	
  in	
  registers	
  

void swap_l(long *xp, long *yp)  
{ 
  long t0 = *xp; 
  long t1 = *yp; 
  *xp = t1; 
  *yp = t0; 
} 

swap: 
 movq  (%rdi), %rdx 
 movq  (%rsi), %rax 
 movq  %rax, (%rdi) 
 movq  %rdx, (%rsi) 
 ret 

 

rtn	
  Ptr	
   %rsp 

No	
  stack	
  
frame	
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x86-­‐64	
  Locals	
  in	
  the	
  Red	
  Zone	
  

¢  Avoiding	
  Stack	
  Pointer	
  Change	
  
§  Can	
  hold	
  all	
  informaJon	
  within	
  small	
  

window	
  beyond	
  stack	
  pointer	
  

/* Swap, using local array */ 
void swap_a(long *xp, long *yp) 
{ 
    volatile long loc[2]; 
    loc[0] = *xp; 
    loc[1] = *yp; 
    *xp = loc[1]; 
    *yp = loc[0]; 
} 

swap_a: 
  movq  (%rdi), %rax 
  movq  %rax, -24(%rsp) 
  movq  (%rsi), %rax 
  movq  %rax, -16(%rsp) 
  movq  -16(%rsp), %rax 
  movq  %rax, (%rdi) 
  movq  -24(%rsp), %rax 
  movq  %rax, (%rsi) 
  ret 

rtn	
  Ptr	
  

unused	
  

%rsp 

−8	
  
loc[1] 

loc[0] 

−16	
  
−24	
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x86-­‐64	
  NonLeaf	
  without	
  Stack	
  Frame	
  

¢  No	
  values	
  held	
  while	
  swap	
  being	
  
invoked	
  

¢  No	
  callee	
  save	
  registers	
  needed	
  
¢  rep	
  instrucHon	
  inserted	
  as	
  no-­‐op	
  

§  Based	
  on	
  recommendaJon	
  from	
  AMD	
  

/* Swap a[i] & a[i+1] */ 
void swap_ele(long a[], int i) 
{ 
    swap(&a[i], &a[i+1]); 
} 

swap_ele: 
  movslq %esi,%rsi            # Sign extend i 

 leaq  8(%rdi,%rsi,8), %rax # &a[i+1] 
 leaq  (%rdi,%rsi,8), %rdi  # &a[i] (1st arg)
 movq  %rax, %rsi  # (2nd arg)  
 call  swap 
 rep   # No-op 
 ret 
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x86-­‐64	
  Stack	
  Frame	
  Example	
  

¢  Keeps	
  values	
  of	
  &a[i]	
  and	
  
&a[i+1]	
  in	
  callee	
  save	
  
registers	
  

¢  Must	
  set	
  up	
  stack	
  frame	
  to	
  
save	
  these	
  registers	
  

long sum = 0; 
/* Swap a[i] & a[i+1] */ 
void swap_ele_su 
  (long a[], int i) 
{ 
    swap(&a[i], &a[i+1]); 
    sum += (a[i]*a[i+1]); 
} 

swap_ele_su: 
  movq  %rbx, -16(%rsp) 

 movq  %rbp, -8(%rsp) 
 subq  $16, %rsp 
 movslq  %esi,%rax 
 leaq  8(%rdi,%rax,8), %rbx 
 leaq  (%rdi,%rax,8), %rbp 
 movq  %rbx, %rsi 
 movq  %rbp, %rdi 
 call  swap 
 movq  (%rbx), %rax 
 imulq  (%rbp), %rax 
 addq  %rax, sum(%rip) 
 movq  (%rsp), %rbx 
 movq  8(%rsp), %rbp 
 addq  $16, %rsp 
 ret 
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Understanding	
  x86-­‐64	
  Stack	
  Frame	
  
swap_ele_su: 

 movq  %rbx, -16(%rsp)  # Save %rbx 
 movq  %rbp, -8(%rsp)  # Save %rbp 
 subq  $16, %rsp  # Allocate stack frame 
 movslq  %esi,%rax  # Extend i 
 leaq  8(%rdi,%rax,8), %rbx  # &a[i+1] (callee save) 
 leaq  (%rdi,%rax,8), %rbp  # &a[i]   (callee save) 
 movq  %rbx, %rsi  # 2nd argument 
 movq  %rbp, %rdi  # 1st argument 
 call  swap   
 movq  (%rbx), %rax  # Get a[i+1] 
 imulq  (%rbp), %rax  # Multiply by a[i] 
 addq  %rax, sum(%rip)  # Add to sum 
 movq  (%rsp), %rbx  # Restore %rbx 
 movq  8(%rsp), %rbp  # Restore %rbp 
 addq  $16, %rsp  # Deallocate frame 
 ret 
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Understanding	
  x86-­‐64	
  Stack	
  Frame	
  
rtn	
  addr	
  
%rbp 

%rsp 

−8	
  
%rbx −16	
  

rtn	
  addr	
  
%rbp 

%rsp 

+8	
  
%rbx 

 movq  %rbx, -16(%rsp)  # Save %rbx 
 movq  %rbp, -8(%rsp)  # Save %rbp 
  
  

 
 subq  $16, %rsp  # Allocate stack frame 

 movq  (%rsp), %rbx  # Restore %rbx 
 movq  8(%rsp), %rbp  # Restore %rbp 

 
 addq  $16, %rsp  # Deallocate frame 

l l l 
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InteresHng	
  Features	
  of	
  Stack	
  Frame	
  
¢  Allocate	
  enHre	
  frame	
  at	
  once	
  

§  All	
  stack	
  accesses	
  can	
  be	
  relaJve	
  to	
  %rsp 
§  Do	
  by	
  decremenJng	
  stack	
  pointer	
  
§  Can	
  delay	
  allocaJon,	
  since	
  safe	
  to	
  temporarily	
  use	
  red	
  zone	
  

¢  Simple	
  deallocaHon	
  
§  Increment	
  stack	
  pointer	
  
§  No	
  base/frame	
  pointer	
  needed	
  



Carnegie Mellon 

13 

x86-­‐64	
  Procedure	
  Summary	
  
¢  Heavy	
  use	
  of	
  registers	
  

§  Parameter	
  passing	
  
§  More	
  temporaries	
  since	
  more	
  registers	
  

¢  Minimal	
  use	
  of	
  stack	
  
§  SomeJmes	
  none	
  
§  Allocate/deallocate	
  enJre	
  block	
  

¢  Many	
  tricky	
  opHmizaHons	
  
§  What	
  kind	
  of	
  stack	
  frame	
  to	
  use	
  
§  Various	
  allocaJon	
  techniques	
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Today	
  
¢  Procedures	
  (x86-­‐64)	
  
¢  Arrays	
  

§  One-­‐dimensional	
  
§  MulJ-­‐dimensional	
  (nested)	
  
§  MulJ-­‐level	
  

¢  Structures	
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Basic	
  Data	
  Types	
  
¢  Integral	
  

§  Stored	
  &	
  operated	
  on	
  in	
  general	
  (integer)	
  registers	
  
§  Signed	
  vs.	
  unsigned	
  depends	
  on	
  instrucJons	
  used	
  

Intel 	
  ASM 	
  Bytes 	
  C	
  
byte 	
  b 	
  1 	
  [unsigned] char 
word 	
  w 	
  2 	
  [unsigned] short	
  
double	
  word 	
  l 	
  4 	
  [unsigned] int 
quad	
  word 	
  q 	
  8 	
  [unsigned] long int (x86-­‐64)	
  

¢ FloaHng	
  Point	
  
§  Stored	
  &	
  operated	
  on	
  in	
  floaJng	
  point	
  registers	
  

Intel 	
  ASM 	
  Bytes 	
  C	
  
Single 	
  s 	
  4 	
  float 
Double 	
  l 	
  8 	
  double 
Extended 	
  t 	
  10/12/16 	
  long double 
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Array	
  AllocaHon	
  
¢  Basic	
  Principle	
  

T	
  	
  A[L];	
  
§  Array	
  of	
  data	
  type	
  T	
  and	
  length	
  L	
  
§  ConJguously	
  allocated	
  region	
  of	
  L	
  *	
  sizeof(T)	
  bytes	
  

char string[12]; 

x	
   x	
  +	
  12	
  

int val[5]; 

x	
   x	
  +	
  4	
   x	
  +	
  8	
   x	
  +	
  12	
   x	
  +	
  16	
   x	
  +	
  20	
  

double a[3]; 

x	
  +	
  24	
  x	
   x	
  +	
  8	
   x	
  +	
  16	
  

char *p[3]; 

x	
   x	
  +	
  8	
   x	
  +	
  16	
   x	
  +	
  24	
  

x	
   x	
  +	
  4	
   x	
  +	
  8	
   x	
  +	
  12	
  

IA32	
  

x86-­‐64	
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Array	
  Access	
  
¢ Basic	
  Principle	
  

T	
  	
  A[L];	
  
§  Array	
  of	
  data	
  type	
  T	
  and	
  length	
  L	
  
§  IdenJfier	
  A	
  can	
  be	
  used	
  as	
  a	
  pointer	
  to	
  array	
  element	
  0:	
  Type	
  T*	
  

¢ Reference 	
  Type 	
  Value	
  
val[4]  int  3	
  
val  int *  x	
  
val+1 	
  int *  x	
  +	
  4	
  
&val[2] 	
  int *  x	
  +	
  8	
  
val[5] 	
  int  ??	
  
*(val+1) 	
  int  5	
  
val + i 	
  int *  x	
  +	
  4	
  i	
  

int val[5]; 1	
   5	
   2	
   1	
   3	
  

x	
   x	
  +	
  4	
   x	
  +	
  8	
   x	
  +	
  12	
   x	
  +	
  16	
   x	
  +	
  20	
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Expression Type Value Assembly Code 
E! int *! XE	

 movl %edx,%eax!

E[0]! int! M[ XE ]	

 movl (%edx),%eax!

E[i]! int! M[ XE+4 i ]	

 movl (%edx,%ecx,4),%eax!

&E[2]! int *! XE + 8	

 leal 8(%edx),%eax!

E+i-1! int *! XE + 4 i – 4	

 leal -4(%edx,%ecx,4),%eax!

*(E+i-3)! int ! M[ XE+ 4 i – 12 ]	

 movl -12(%edx,%ecx,4),%eax !

&E[i]-E! int! i	

 movl %ecx,%eax!

XE 	

Address 	


M [ ] 	

 Value stored in address	


	


Remember that A[i]  is the same as *(A+i)	
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Array	
  Example	
  

¢  DeclaraHon	
  “zip_dig cmu”	
  equivalent	
  to	
  “int cmu[5]”	
  
¢  Example	
  arrays	
  were	
  allocated	
  in	
  successive	
  20	
  byte	
  blocks	
  

§  Not	
  guaranteed	
  to	
  happen	
  in	
  general	
  

#define ZLEN 5 
typedef int zip_dig[ZLEN]; 
 
zip_dig cmu = { 1, 5, 2, 1, 3 }; 
zip_dig mit = { 0, 2, 1, 3, 9 }; 
zip_dig ucb = { 9, 4, 7, 2, 0 }; 

zip_dig cmu; 1	
   5	
   2	
   1	
   3	
  

16	
   20	
   24	
   28	
   32	
   36	
  

zip_dig mit; 0	
   2	
   1	
   3	
   9	
  

36	
   40	
   44	
   48	
   52	
   56	
  

zip_dig ucb; 9	
   4	
   7	
   2	
   0	
  

56	
   60	
   64	
   68	
   72	
   76	
  



Carnegie Mellon 

20 

Array	
  Accessing	
  Example	
  

n  Register	
  %edx	
  contains	
  
starHng	
  address	
  of	
  array	
  

n  Register	
  %eax	
  contains	
  	
  
array	
  index	
  

n  Desired	
  digit	
  at	
  	
  
4*%eax + %edx	
  

n  Use	
  memory	
  reference	
  
(%edx,%eax,4)	
  

int get_digit 
  (zip_dig z, int dig) 
{ 
  return z[dig]; 
} 

  # %edx = z 
  # %eax = dig 
 movl (%edx,%eax,4),%eax  # z[dig] 

IA32	
  

zip_dig cmu; 1	
   5	
   2	
   1	
   3	
  

16	
   20	
   24	
   28	
   32	
   36	
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  # edx = z 
 movl  $0, %eax  #   %eax = i 

.L4:   # loop: 
 addl  $1, (%edx,%eax,4) #   z[i]++ 
 addl  $1, %eax  #   i++ 
 cmpl  $5, %eax  #   i:5 
 jne  .L4  #   if !=, goto loop 

Array	
  Loop	
  Example	
  (IA32)	
  

void zincr(zip_dig z) { 
  int i; 
  for (i = 0; i < ZLEN; i++) 
    z[i]++; 
} 
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Pointer	
  Loop	
  Example	
  (IA32)	
  
void zincr_p(zip_dig z) { 
  int *zend = z+ZLEN; 
  do { 
    (*z)++; 
    z++; 
  } while (z != zend);   
} 

void zincr_v(zip_dig z) { 
  void *vz = z; 
  int i = 0; 
  do { 
    (*((int *) (vz+i)))++; 
    i += ISIZE; 
  } while (i != ISIZE*ZLEN); 
} 

 # edx = z = vz 
 movl  $0, %eax  #   i = 0 

.L8:   # loop: 
 addl  $1, (%edx,%eax)  #   Increment vz+i 
 addl  $4, %eax  #   i +=  4 
 cmpl  $20, %eax  #   Compare i:20 
 jne  .L8  #   if !=, goto loop 
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Nested	
  Array	
  Example	
  

¢  “zip_dig pgh[4]”	
  equivalent	
  to	
  “int pgh[4][5]”	
  
§  Variable	
  pgh:	
  array	
  of	
  4	
  elements,	
  allocated	
  conJguously	
  
§  Each	
  element	
  is	
  an	
  array	
  of	
  5	
  int’s,	
  allocated	
  conJguously	
  

¢  “Row-­‐Major”	
  ordering	
  of	
  all	
  elements	
  guaranteed	
  

#define PCOUNT 4 
zip_dig pgh[PCOUNT] =  
  {{1, 5, 2, 0, 6}, 
   {1, 5, 2, 1, 3 }, 
   {1, 5, 2, 1, 7 }, 
   {1, 5, 2, 2, 1 }}; 

zip_dig 
pgh[4]; 

76 96 116 136 156 

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1 
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MulHdimensional	
  (Nested)	
  Arrays	
  
¢  DeclaraHon	
  

T	
  	
  	
  A[R][C];	
  
§  2D	
  array	
  of	
  data	
  type	
  T	
  
§  R	
  rows,	
  C	
  columns	
  
§  Type	
  T	
  element	
  requires	
  K	
  bytes	
  

¢  Array	
  Size	
  
§  R	
  *	
  C	
  *	
  K	
  bytes	
  

¢  Arrangement	
  
§  Row-­‐Major	
  Ordering	
  

A[0][0] A[0][C-1] 

A[R-1][0] 

• • • 

• • • A[R-1][C-1] 

• 
• 
• 

• 
• 
• 

int A[R][C]; 

• • • 
A 

[0] 
[0] 

A 
[0] 
[C-1] 

• • • 
A 

[1] 
[0] 

A 
[1] 
[C-1] 

• • • 
A 

[R-1] 
[0] 

A 
[R-1] 
[C-1] 

•  •  • 

4*R*C	
  	
  Bytes	
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•	
  	
  •	
  	
  •	
  

Nested	
  Array	
  Row	
  Access	
  
¢  Row	
  Vectors	
  

§  	
  A[i]	
  is	
  array	
  of	
  C	
  elements	
  
§  Each	
  element	
  of	
  type	
  T	
  requires	
  K	
  bytes	
  
§  StarJng	
  address	
  A + 	
  i	
  *	
  (C	
  *	
  K)	
  

•	
  •	
  •	
  
A 

[i] 
[0] 

A 
[i] 
[C-1] 

A[i]	
  

•	
  •	
  •	
  
A 

[R-1] 
[0] 

A 
[R-1] 
[C-1] 

A[R-1]	
  

•	
  	
  •	
  	
  •	
  

A 

•	
  •	
  •	
  
A 

[0] 
[0] 

A 
[0] 
[C-1] 

A[0]	
  

A+i*C*4 A+(R-1)*C*4 

int A[R][C]; 
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Nested	
  Array	
  Row	
  Access	
  Code	
  

¢  Row	
  Vector	
  
§  	
  pgh[index]	
  is	
  array	
  of	
  5	
  int’s	
  
§  StarJng	
  address	
  pgh+20*index 

¢  IA32	
  Code	
  
§  Computes	
  and	
  returns	
  address	
  
§  Compute	
  as	
  pgh + 4*(index+4*index) 

int *get_pgh_zip(int index) 
{ 
  return pgh[index]; 
} 
 
 

  # %eax = index 
 leal (%eax,%eax,4),%eax # 5 * index 
 leal pgh(,%eax,4),%eax  # pgh + (20 * index) 

#define PCOUNT 4 
zip_dig pgh[PCOUNT] =  
  {{1, 5, 2, 0, 6}, 
   {1, 5, 2, 1, 3 }, 
   {1, 5, 2, 1, 7 }, 
   {1, 5, 2, 2, 1 }}; 
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•	
  	
  •	
  	
  •	
  

Nested	
  Array	
  Row	
  Access	
  
¢  Array	
  Elements	
   

§  	
  A[i][j]	
  is	
  element	
  of	
  type	
  T,	
  which	
  requires	
  K	
  bytes 
§  Address	
  	
  A + i	
  *	
  (C	
  *	
  K)	
  +	
  	
  j	
  *	
  K	
  =	
  A	
  +	
  (i	
  *	
  C	
  +	
  	
  j)*	
  K	
  

	
  •	
  •	
  •	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  •	
  •	
  •	
  
A 

[i] 
[j] 

A[i]	
  

•	
  •	
  •	
  
A 

[R-1] 
[0] 

A 
[R-1] 
[C-1] 

A[R-1]	
  

•	
  	
  •	
  	
  •	
  

A 

•	
  •	
  •	
  
A 

[0] 
[0] 

A 
[0] 
[C-1] 

A[0]	
  

A+i*C*4 A+(R-1)*C*4 

int A[R][C]; 

A+i*C*4+j*4 
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Nested	
  Array	
  Element	
  Access	
  Code	
  

¢  Array	
  Elements	
   
§  	
  pgh[index][dig]	
  is	
  int 
§  Address:	
  pgh + 20*index + 4*dig 

§  =	
  	
  	
  pgh + 4*(5*index + dig) 

¢  IA32	
  Code	
  
§  Computes	
  address	
  pgh + 4*((index+4*index)+dig)	
  

int get_pgh_digit 
  (int index, int dig) 
{ 
  return pgh[index][dig]; 
} 

 movl  8(%ebp), %eax  # index 
 leal  (%eax,%eax,4), %eax  # 5*index 
 addl  12(%ebp), %eax  # 5*index+dig 
 movl  pgh(,%eax,4), %eax  # offset 4*(5*index+dig) 
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MulH-­‐Level	
  Array	
  Example	
  
¢  Variable	
  univ	
  denotes	
  

array	
  of	
  3	
  elements	
  
¢  Each	
  element	
  is	
  a	
  pointer	
  

§  4	
  bytes	
  
¢  Each	
  pointer	
  points	
  to	
  array	
  

of	
  int’s	
  	
  

zip_dig cmu = { 1, 5, 2, 1, 3 }; 
zip_dig mit = { 0, 2, 1, 3, 9 }; 
zip_dig ucb = { 9, 4, 7, 2, 0 }; 

#define UCOUNT 3 
int *univ[UCOUNT] = {mit, cmu, ucb}; 

36 160 

16 

56 

164 

168 

univ 

cmu 

mit 

ucb 

1	
   5	
   2	
   1	
   3	
  

16	
   20	
   24	
   28	
   32	
   36	
  
0	
   2	
   1	
   3	
   9	
  

36	
   40	
   44	
   48	
   52	
   56	
  

9	
   4	
   7	
   2	
   0	
  

56	
   60	
   64	
   68	
   72	
   76	
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Element	
  Access	
  in	
  MulH-­‐Level	
  Array	
  

¢  ComputaHon	
  (IA32)	
  
§  Element	
  access	
  Mem[Mem[univ+4*index]+4*dig] 
§  Must	
  do	
  two	
  memory	
  reads	
  

§  First	
  get	
  pointer	
  to	
  row	
  array	
  
§  Then	
  access	
  element	
  within	
  array	
  

 movl  8(%ebp), %eax   # index 
 movl  univ(,%eax,4), %edx  # p = univ[index] 
 movl  12(%ebp), %eax   # dig 
 movl  (%edx,%eax,4), %eax  # p[dig] 

int get_univ_digit 
  (int index, int dig) 
{ 
  return univ[index][dig]; 
} 
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Array	
  Element	
  Accesses	
  

int get_pgh_digit 
  (int index, int dig) 
{ 
  return pgh[index][dig]; 
} 

int get_univ_digit 
  (int index, int dig) 
{ 
  return univ[index][dig]; 
} 

Nested	
  array	
   MulH-­‐level	
  array	
  

Accesses	
  looks	
  similar	
  in	
  C,	
  but	
  addresses	
  very	
  different:	
  	
  

Mem[pgh+20*index+4*dig] Mem[Mem[univ+4*index]+4*dig] 
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N	
  X	
  N	
  Matrix	
  Code	
  

¢  Fixed	
  dimensions	
  
§  Know	
  value	
  of	
  N	
  at	
  

compile	
  Jme	
  

¢  Variable	
  dimensions,	
  
explicit	
  indexing	
  
§  TradiJonal	
  way	
  to	
  

implement	
  dynamic	
  
arrays	
  

¢  Variable	
  dimensions,	
  
implicit	
  indexing	
  
§  Now	
  supported	
  by	
  gcc	
  

#define N 16 
typedef int fix_matrix[N][N]; 
/* Get element a[i][j] */ 
int fix_ele 
  (fix_matrix a, int i, int j) 
{ 
  return a[i][j]; 
} 

#define IDX(n, i, j) ((i)*(n)+(j)) 
/* Get element a[i][j] */ 
int vec_ele 
 (int n, int *a, int i, int j) 
{ 
  return a[IDX(n,i,j)]; 
} 

/* Get element a[i][j] */ 
int var_ele 
 (int n, int a[n][n], int i, int j) 
{ 
  return a[i][j]; 
} 
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33 

/* Get element a[i][j] */ 
int fix_ele(fix_matrix a, int i, int j) { 
  return a[i][j]; 
} 

 movl  12(%ebp), %edx  # i 
 sall  $6, %edx  # i*64 
 movl  16(%ebp), %eax  # j 
 sall  $2, %eax  # j*4 
 addl  8(%ebp), %eax  # a + j*4 
 movl  (%eax,%edx), %eax # *(a + j*4 + i*64) 

¢  Array	
  Elements	
   
§  Address	
  	
  A + i	
  *	
  (C	
  *	
  K)	
  +	
  	
  j	
  *	
  K	
  
§  C	
  =	
  16,	
  K	
  =	
  4	
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/* Get element a[i][j] */ 
int var_ele(int n, int a[n][n], int i, int j) { 
  return a[i][j]; 
} 

 movl  8(%ebp), %eax  # n 
 sall  $2, %eax  # n*4 
 movl  %eax, %edx  # n*4 
 imull 16(%ebp), %edx  # i*n*4 
 movl  20(%ebp), %eax  # j 
 sall  $2, %eax  # j*4 
 addl  12(%ebp), %eax  # a + j*4 
 movl  (%eax,%edx), %eax # *(a + j*4 + i*n*4) 

¢  Array	
  Elements	
   
§  Address	
  	
  A + i	
  *	
  (C	
  *	
  K)	
  +	
  	
  j	
  *	
  K	
  
§  C	
  =	
  n,	
  K	
  =	
  4	
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OpHmizing	
  Fixed	
  Array	
  Access	
  

¢  ComputaHon	
  
§  Step	
  through	
  all	
  elements	
  in	
  

column	
  j	
  

¢  OpHmizaHon	
  
§  Retrieving	
  successive	
  

elements	
  from	
  single	
  
column	
  

#define N 16 
typedef int fix_matrix[N][N];   

/* Retrieve column j from array */ 
void fix_column 
  (fix_matrix a, int j, int *dest) 
{ 
  int i; 
  for (i = 0; i < N; i++) 
    dest[i] = a[i][j]; 
} 

a j-­‐th	
  column	
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OpHmizing	
  Fixed	
  Array	
  Access	
  
¢  OpHmizaHon	
  

§  Compute	
  ajp	
  =	
  &a[i][j]	
  
§  IniJally	
  =	
  a	
  +	
  4*j	
  
§  Increment	
  by	
  4*N	
  

/* Retrieve column j from array */ 
void fix_column 
  (fix_matrix a, int j, int *dest) 
{ 
  int i; 
  for (i = 0; i < N; i++) 
    dest[i] = a[i][j]; 
} 

.L8:   # loop: 
   movl  (%ecx), %eax  #   Read *ajp 
   movl  %eax, (%ebx,%edx,4) #   Save in dest[i] 
   addl  $1, %edx  #   i++ 
   addl  $64, %ecx  #   ajp += 4*N 
   cmpl  $16, %edx  #   i:N 
   jne  .L8  #   if !=, goto loop 

Register	
   Value	
  

%ecx ajp 

%ebx dest 

%edx i 
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OpHmizing	
  Variable	
  Array	
  Access	
  
§  Compute	
  ajp	
  =	
  &a[i][j]	
  

§  IniJally	
  =	
  a	
  +	
  4*j	
  
§  Increment	
  by	
  4*n	
  

/* Retrieve column j from array */ 
void var_column 
  (int n, int a[n][n],  
   int j, int *dest) 
{ 
  int i; 
  for (i = 0; i < n; i++) 
    dest[i] = a[i][j]; 
} 

.L18:   # loop: 
   movl  (%ecx), %eax  #   Read *ajp 
   movl  %eax, (%edi,%edx,4) #   Save in dest[i] 
   addl  $1, %edx  #   i++ 
   addl  $ebx, %ecx  #   ajp += 4*n 
   cmpl  $edx, %esi  #   n:i 
   jg  .L18  #   if >, goto loop 

Register	
   Value	
  

%ecx ajp 

%edi dest 

%edx i 

%ebx 4*n 

%esi n 
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Today	
  
¢  Procedures	
  (x86-­‐64)	
  
¢  Arrays	
  

§  One-­‐dimensional	
  
§  MulJ-­‐dimensional	
  (nested)	
  
§  MulJ-­‐level	
  

¢  Structures	
  
§  AllocaJon	
  
§  Access	
  



Carnegie Mellon 

39 

struct rec { 
  int a[3]; 
  int i; 
  struct rec *n; 
}; 

Structure	
  AllocaHon	
  

¢  Concept	
  
§  ConJguously-­‐allocated	
  region	
  of	
  memory	
  
§  Refer	
  to	
  members	
  within	
  structure	
  by	
  names	
  
§  Members	
  may	
  be	
  of	
  different	
  types	
  

Memory	
  Layout	
  
i a n 

0 12 16 20 
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struct rec { 
  int a[3]; 
  int i; 
  struct rec *n; 
}; 

IA32	
  Assembly	
  
 # %edx = val 
 # %eax = r 
 movl %edx, 12(%eax)  # Mem[r+12] = val 

void  
set_i(struct rec *r, 
      int val) 
{ 
  r->i = val; 
} 

Structure	
  Access	
  

¢  Accessing	
  Structure	
  Member	
  
§  Pointer	
  indicates	
  first	
  byte	
  of	
  structure	
  
§  Access	
  elements	
  with	
  offsets	
  

i a n 

0 12 16 20 

r+12 r 
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 movl  12(%ebp), %eax  # Get idx 
 sall  $2, %eax  # idx*4 
 addl  8(%ebp), %eax  # r+idx*4 

int *get_ap 
 (struct rec *r, int idx) 
{ 
  return &r->a[idx]; 
} 

GeneraHng	
  Pointer	
  to	
  Structure	
  Member	
  

¢  GeneraHng	
  Pointer	
  to	
  
Array	
  Element	
  
§  Offset	
  of	
  each	
  structure	
  

member	
  determined	
  at	
  
compile	
  Jme	
  

§  Arguments	
  
§  Mem[%ebp+8]:	
  r 
§  Mem[%ebp+12]:	
  idx 

r+idx*4 r 

i a n 

0 12 16 20 

struct rec { 
  int a[3]; 
  int i; 
  struct rec *n; 
}; 
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 .L17:   # loop:  
   movl  12(%edx), %eax  # r->i 
   movl  %ecx, (%edx,%eax,4) # r->a[i] = val 
   movl  16(%edx), %edx  # r = r->n 
   testl  %edx, %edx  # Test r 
   jne  .L17  # If != 0 goto loop 

void set_val 
  (struct rec *r, int val) 
{ 
  while (r) { 
    int i = r->i; 
    r->a[i] = val; 
    r = r->n; 
  } 
} 

Following	
  Linked	
  List	
  
¢  C	
  Code	
  

struct rec { 
  int a[3]; 
  int i; 
  struct rec *n; 
}; 

i a n 

0 12 16 20 

Element	
  i	
  

Register	
   Value	
  

%edx r 

%ecx val 
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Summary	
  

¢  Procedures	
  in	
  x86-­‐64	
  
§  Stack	
  frame	
  is	
  relaJve	
  to	
  stack	
  pointer	
  
§  Parameters	
  passed	
  in	
  registers	
  

¢  Arrays	
  
§  One-­‐dimensional	
  
§  MulJ-­‐dimensional	
  (nested)	
  
§  MulJ-­‐level	
  

¢  Structures	
  
§  AllocaJon	
  
§  Access	
  


