1 Organization

Class Web page: http://www.cs.cmu.edu/~213

Electronic copies of class handouts and lectures can be found on the class Web page.

Teaching staff email address: 15-213-staff@cs.cmu.edu

Please send email to this address whenever you have questions about the course. Don’t send mail to individual staff members except to schedule one-on-one meetings. Any emails you send to this address will be received by all members of the teaching staff. Using it allows us to give you the fastest and most consistent responses to your questions. We will not be using Blackboard or any other message board.

Instructors:
- Seth Goldstein
 seth@cs.cmu.edu
 GHC 7111, 412-268-3828
- Anthony Rowe
 agr@ece.cmu.edu
 CIC 2217, 412-268-1297
- Greg Kesden
 gkesden@cs.cmu.edu
 GHC 7711, 412-268-1590

Lecture 1: Tue and Thu, 1:30–2:50pm, GHC 4401, Goldstein and Rowe
Lecture 2: Tue and Thu, 6:30–7:50pm, WeH 7500, Kesden

Recitations:

<table>
<thead>
<tr>
<th>Section</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mon</td>
<td>9:30-10:20</td>
<td>WEH 4401</td>
<td>tbd</td>
</tr>
<tr>
<td>B</td>
<td>Mon</td>
<td>10:30-11:20</td>
<td>WEH 5302</td>
<td>Kevin Bao</td>
</tr>
<tr>
<td>C</td>
<td>Mon</td>
<td>11:30-12:20</td>
<td>WEH 5302</td>
<td>Alexey Tumanov</td>
</tr>
<tr>
<td>D</td>
<td>Mon</td>
<td>12:30-1:20</td>
<td>WEH 5302</td>
<td>Grant Skudlarek</td>
</tr>
<tr>
<td>E</td>
<td>Mon</td>
<td>1:30-2:20</td>
<td>WEH 5302</td>
<td>Eugene Choi</td>
</tr>
<tr>
<td>F</td>
<td>Mon</td>
<td>2:30-3:20</td>
<td>WEH 5302</td>
<td>Ian Hartwig</td>
</tr>
<tr>
<td>G</td>
<td>Mon</td>
<td>3:30-4:20</td>
<td>WEH 5302</td>
<td>Joon-Sup Han</td>
</tr>
<tr>
<td>H</td>
<td>Mon</td>
<td>4:30-5:20</td>
<td>WEH 5302</td>
<td>Jimmy Guo</td>
</tr>
<tr>
<td>I</td>
<td>Mon</td>
<td>9:30-10:20</td>
<td>WEH 5310</td>
<td>Andrey Kostov</td>
</tr>
<tr>
<td>J</td>
<td>Mon</td>
<td>10:30-11:20</td>
<td>WEH 5310</td>
<td>Pradyumna Agrawal</td>
</tr>
<tr>
<td>K</td>
<td>Mon</td>
<td>11:30-12:20</td>
<td>SH 222</td>
<td>Richard Wang</td>
</tr>
<tr>
<td>L</td>
<td>Mon</td>
<td>2:30-3:20</td>
<td>SH 220</td>
<td>Tommy Klein</td>
</tr>
<tr>
<td>M</td>
<td>Mon</td>
<td>4:30-5:20</td>
<td>DH 1117</td>
<td>Anita Zhang</td>
</tr>
</tbody>
</table>

Office Hours: Please see the class Web page for instructor and TA office hours.
2 Objectives

Our aim in 15-213 is to help you become a better programmer by teaching you the basic concepts underlying all computer systems. We want you to learn what really happens when your programs run, so that when things go wrong (as they always do) you will have the intellectual tools to solve the problem.

Why do you need to understand computer systems if you do all of your programming in high level languages? In most of computer science, we’re pushed to make abstractions and stay within their frameworks. But, any abstraction ignores effects that can become critical. As an analogy, Newtonian mechanics ignores relativistic effects. The Newtonian abstraction is completely appropriate for bodies moving at less than $0.1c$, but higher speeds require working at a greater level of detail.

The following “realities” are some of the major areas where the abstractions you’ve learned in previous classes break down:

1. **Int’s are not integers, Float’s are not reals.** Our finite representations of numbers have significant limitations, and because of these limitations we sometimes have to think in terms of bit-level representations.

2. **You’ve got to know assembly language.** Even if you never write programs in assembly, The behavior of a program cannot be understood sometimes purely based on the abstraction of a high-level language. Further, understanding the effects of bugs requires familiarity with the machine-level model.

3. **Memory matters.** Computer memory is not unbounded. It must be allocated and managed. Memory referencing errors are especially pernicious. An erroneous updating of one object can cause a change in some logically unrelated object. Also, the combination of caching and virtual memory provides the functionality of a uniform unbounded address space, but not the performance.

4. **There is more to performance than asymptotic complexity.** Constant factors also matter. There are systematic ways to evaluate and improve program performance.

5. **Computers do more than execute instructions.** They also need to get data in and out and they interact with other systems over networks.

By the end of the course, you will understand these “realities” in some detail. As a result, you will be prepared to take any of the upper-level systems classes at Carnegie Mellon (both CS and ECE). Even more important, you will have learned skills and knowledge that will help you throughout your career.

3 Textbook

The primary textbook for the course is

Please make sure you have the Second Edition, which is significantly different from the First Edition published in 2003. In addition, we require you to have the following reference book on the C programming language:

This is the classic *K & R* book, the standard against which all reference manuals are compared. It is an essential part of every computer scientist’s library.

4 Course Organization

Your participation in the course will involve five forms of activity:

1. Attending the lectures.
2. Preparing for and participating in the recitations.
3. Doing laboratory assignments.
4. Reading the text.
5. Taking exams.

Attendance will not be taken at the lectures or recitation sections. You will be considered responsible for all material presented at the lectures and recitations.

Lectures will cover higher-level concepts. Recitations will be more applied, covering important “how-to’s”, especially in using tools that will help you do the labs. In addition, the recitations will help clarify lecture topics and describe exam coverage.

The textbook contains both *practice problems* within the chapter text and *homework problems* at the end of each chapter. The intention is that you work on the practice problems as you are reading the book. The answers to these problems are at the end of each chapter. Our experience has been that trying out the concepts on simple examples helps make the ideas more concrete. In addition, the class schedule (on the class Web page) shows specific homework problems with each lecture topic. The intention is that you try these out and discuss them in the next recitation. You will find that you will get much more out of recitation if you have done some advance preparation.

The only graded assignments in this class will be a set of seven labs. Some of these are fairly short, requiring just one week, while others are more ambitious, requiring several weeks.

5 Getting Help

For all communication with the teaching staff, please send email to 15-213-staff@cs.cmu.edu.
We will use the class website (http://www.cs.cmu.edu/~213) as the central repository for all information about the class.

The lab assignments are offered through a hosted autograding service, written by CMU students and faculty, called Autolab. See the Autolab Web page at http://autolab.cs.cmu.edu for more information.

If you want to talk to a staff member in person, the posted office hours are the best opportunity, as they represent times when we guarantee that we will be in the location identified. If a meeting is needed outside of the office hours, please use email to arrange a time. (Note that 15-213-staff@cs.cmu.edu reaches all of the teaching staff, maximizing your odds of a rapid turnaround.)

6 Policies

Working Alone on Assignments

You will work on all assignments by yourself. The only exception is the last assignment (proxylab) where you can work with a single partner to produce a single result.

Handing in Assignments

All assignments are due at 11:59pm (one minute before midnight) on the specified due date. All handins are electronic using the Autolab system. You may handin as often you like, with your most recent handin counting for credit.

Handing in Late Assignments

The penalty for late assignments is 15% per day. Each student will receive a budget of five grace days for the course. These grace days are provided to allow you to cope with most emergencies that prevent completing a lab on time, including computer problems, a cold, getting stuck at the airport, etc. Here is how grace days work:

- Grace days are applied automatically until you run out. But, no more than two grace days can be used on any one assignment.

- If your last handin is one day late, and you have at least one remaining grace day, then you will receive full credit for the lab and automatically spend one grace day. For example, if an assignment is due at 11:59pm on Thursday and your last handin is noon on Friday, then you will receive full credit and spend one grace day.

- Once you have spent your grace days, or exhausted the limit of two for the assignment in question, then you will receive a penalty of 15% for each subsequent late day. For example, suppose you have only one grace day left. If an assignment is due at 11:59pm on Thursday and your last handin is noon on Saturday, then you will spend your one remaining grace day and be penalized 15%. If your last handin is noon on Sunday, then you will spend one grace day and be penalized 30%.
• Handins will not be accepted after the end date of the lab, which is typically three days after the due date.

• The budget of five grace days is for the first six assignments (through malloclab). There are no grace days for the final assignment (proxylab).

Grace days are a tool to allow you to manage your time in the face of personal issues and to help smooth out burstiness in assignment due dates across classes. They are for when you are sick, when a short-term emergency situation arises, when you have too many deadlines all at once, etc. Except for serious persistent personal issues (see below), you should not anticipate additional deadline leniency. We strongly recommend that you conserve your grace days, saving them for true emergencies and time pressures at the end of the term.

Dealing with Serious Persistent Personal Issues

We hope that everyone in 15-213 will remain happy and healthy. But, if you have a serious persistent personal issue, such as being hospitalized for an extended period or needing to leave the country for a family matter, please talk to your academic advisor as soon as possible. Such issues consistently affect one’s ability to succeed in all classes, rather than just 15-213, and the academic advisors are equipped to coordinate plans for dealing with them. We will cooperate with such plans, but we cannot construct them independently of the academic advisors.

Requesting a Regrade for an Assignment or an Exam

After each exam and lab assignment is graded, your score will be posted on the Autolab gradebook. We will make the utmost effort to be fair and consistent in our grading. But, we are human. If you believe that you did not receive appropriate credit for an assignment or an exam, you may request a regrade as follows:

• Exam regrade request: Submit your hardcopy exam with a cover letter explaining in detail why you think that there was a mistake in the grading.

• Lab regrade request: Submit a cover letter (no hardcopy of your code required) explaining in detail why you think there was a mistake in the grading.

• All exam and lab regrade requests should be hand-delivered to Prof. Rowe. Slide them under his door if he is not in. Please note that verbal or email requests will NOT be accepted.

• All regrade requests must be received within seven days of the grades becoming available.

Your request will be processed off-line, and we will respond to your request as quickly as possible (typically within a week). This regrade policy is designed to correct legitimate mistakes in grading, while discouraging frivolous regrade requests (for the sake of being fair and consistent across the entire class).
Final Grade Assignment

Each student will receive a numeric score for the course, based on a weighted average of the following:

- **Assignments (50%)**: There are a total of seven assignments (labs), which will count a combined total of 50% of your score. Assignments have different weightings, based on our perception of the relative effort required. See the class Web page for the assignment weightings.

- **Exams (50%)**: There will a midterm exam counting 20% and a final exam counting 30%.

Grades for the course will be determined by a method that combines both curving and absolute standards. The total score will be plotted as a histogram. Cutoff points are determined by examining the quality of work by students on the borderlines. Individual cases, especially those near the cutoff points may be adjusted upward or downward based on factors such as attendance, class participation, improvement throughout the course, final exam performance, and special circumstances.

Cheating

Each exam and lab assignment must be the sole work of the student turning it in. Assignments will be closely monitored by automatic cheat checkers, including comparing turned-in code to the work of students from the same and previous semesters, and students may be asked to explain any suspicious similarities. These cheat checkers are very effective, having been refined over years of research, and they are not fooled by attempts to mask copying of code. Please don’t try your luck.

The penalty for cheating is to be removed from the course with a failing grade. The University also places a record of the incident in the student’s permanent record.

No collaboration on exams is allowed. The following are guidelines on what non-exam collaboration is authorized and what is not:

What is Cheating?

- **Sharing code or other electronic files**: either by copying, retyping, looking at, or supplying a copy of a file from this or a previous semester. Also not allowed is verbal or other description of one person’s code to another. Be sure to store your work in protected directories, and log off when you leave an open cluster, to prevent others from copying your work without your explicit assistance.

- **Sharing written assignments or exams**: Looking at, copying, or supplying an assignment or exam.

- **Using other’s code**: Using code from this or previous offerings of 213, from other courses at CMU or other institutions, or from any other non-213 source (e.g., software found on the Internet).

- **Looking at other’s code**: Although mentioned above, it bears repeating. Looking at other students’ code or allowing others to look at yours is cheating. This includes one person looking at code and describing it to another. There is no notion of looking “too much,” since no looking is allowed at all.

What is NOT Cheating?
• Clarifying ambiguities or vague points in class handouts or textbooks.

• Helping others use the computer systems, networks, compilers, debuggers, profilers, or other system facilities.

• Helping others with high-level design issues only. Algorithm implementations and other such details are not "high-level design issues".

• Helping others with high-level (not code-based) debugging.

• Using code from the CS:APP website or from the class Web pages.

Be sure to store your work in protected directories, and log off when you leave an open cluster, to prevent others from copying your work without your explicit assistance.

7 Mobile devices and other distractions

Research on learning shows that unexpected noises and movement automatically divert and capture people’s attention, which means you are affecting everyone’s learning experience if your cell phone, pager, laptop, etc. makes noise or is visually distracting during class. For this reason, we allow you to take notes on your laptop, but insist that you turn the sound off so that you do not disrupt other students’ learning. If you are doing anything other than taking notes on your laptop, please sit in the back row so that other students are not distracted by your screen.

8 No recording of class meetings

Recordings of any 213 class, in part or whole, including any audio and/or video recordings, regardless of the media or format, and regardless of the intended or actual use, are not permitted without explicit prior written consent of all instructors. The class will be notified in advance should any such recording be approved. Students have no right to record classes under any University policy. If a student believes that he/she is disabled and needs to record or tape classroom activities, he/she should contact the Office of Equal Opportunity Services, Disability Resources to request an appropriate accommodation.

The penalty for violating this policy is an R in the course. If you are not comfortable with this, please drop the course now.

This policy is intended primarily to protect the privacy of the students. For example, no student should run the risk of potential employers finding a question, incorrect answer, or even look of confusion on the Web. The classroom is a learning environment, not an exhibition. Rather than attempt to control the uncontrollable or distinguish between neutral and detrimental uses, all recording is prohibited. Experience has shown that, excluding special cases such as use by students with disabilities or distance learners, undergraduate students do not improve their performance through the use of recordings.
9 Facilities: Intel Computer Systems Cluster

Intel Corp. has generously donated a cluster of 21 Linux-based 64-bit multicore Nehalem servers, specifically for 15-213, that we will use for all labs and assignments. The class Web page has details.

10 Class Schedule

Please see the schedule maintained on the class Web page for information about lectures, reading assignments, suggested homework problems, lab start and end dates, and the lecturer for each class. The reading assignments are all from the CS:APP2e book.