15-213/18-213 Final Exam Notes Sheet Spring 2013

Jumps Arithmetic Operations
Jump Condition Format Computation
jmp 1 addl Src,Dest Dest = Dest + Src
je ZF subl Src,Dest Dest = Dest - Src
jne ~ZF imull Src,Dest Dest = Dest * Src
js SF idivl Src Divide signed contents of edx:eax by Src.
] Quotient goes into eax and remainder in edx
jns ~SF
] sall Src,Dest Dest = Dest << Src
jg ~(SFAOF)&~ZF
] sarl Src,Dest Dest = Dest >> Src
jge ~(SF~OF)
] shrl Src,Dest Dest = Dest >> Src
jl (SFAOF)
] xorl Src,Dest Dest = Dest ” Src
jle (SFAOF) | ZF
] adnl Src,Dest Dest = Dest & Src
ja ~CF&~ZF
- orl Src,Dest Dest = Dest | Src
Jjb CF
Memory Operations
Format Computation
(Rb, Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reb[Rb]+Reg[Ri]+D]
Registers (Rb,Ri,S) Mem[Reg[Rb]+S*Reg|[Ri]]
63 31 15 87 0
$rax %eax %ax %ah %al Return value
Srbx Sebx %$bx $bh $bl Callee saved Linux Stack
$rcx secx %Cx %ch scl Argument #4
r
$rdx %edx %dx %dh %dl Argument #3
$rsi sesi %si %$sil Argument #2
$rdi %edi %di $dil Argument #1 Caller <
Frame
S$rbp %ebp %bp sopl| Callee saved
Arguments
$rsp %esp %sp %spl Stack Pointer <
°rg %r8d %r8w % r8b Argument #5 \ Return Addr
9 — o
519 %r9d $row srop| Argument #6 ebp gldéchp
$r10 $r10d $ri0w sriop| Reserved
Saved
511l $r11d $rilw sr11p| Used for linking Registers
4y
%ri12 $r12d $rl2w sr12p| Callee saved Local
Variables
5ri3 5r13d $rl3w sr13p| Callee saved
srld $rl4d Srldw sr14p| Callee saved
Argument
$rls $r15d %rlSw sr1sp| Callee saved Build
sesp=—p>

Specific Cases of Alignment (IA32)
1 byte: char, ...

no restrictions on address
2 bytes: short, ...

lowest 1 bit of address must be 02

4 bytes: int, float, char *, ...
lowest 2 bits of address must be 002

8 bytes: double, ...
Windows (and most other OS’ s & instruction sets):
lowest 3 bits of address must be 0002
Linux:
lowest 2 bits of address must be 002
i.e., treated the same as a 4-byte primitive data type

12 bytes: long double
Windows, Linux:
lowest 2 bits of address must be 002
i.e., treated the same as a 4-byte primitive data type

Specific Cases of Alignment (x86-64)

1 byte: char, ...
no restrictions on address
2 bytes: short, ...
lowest 1 bit of address must be 02
4 bytes: int, float, ...
lowest 2 bits of address must be 002
8 bytes: double, char ¥, ...
Windows & Linux:
lowest 3 bits of address must be 0002
16 bytes: long double
Linux:
lowest 3 bits of address must be 0002
i.e., treated the same as a 8-byte primitive data type

Floating Point

Bias = 2k1 — 1

C Data Type Intel 1A32 x86-64
char 1 1
short 2 2
int 4 4
long 4 8
long long 8 8
float 4 4
double 8 8
long double 10/12 10/16
pointer 4 8
Byte Ordering

4-byte variable 0x01234567 at 0x100
Big Endian
Least significant byte has highest address

0x100 0x101 0x102 0x103
[o1 [23 | a5 | &7 |

Little Endian
Least significant byte has lowest address
0x100 0x101 0x102 0x103
| 67 | a5 | 23 | o1 |

End-to-end Core i7 Address Translation

32/64
CPU . W L2, L3, and
Virtual address (VA) 1 main memory
36 « 12 Y
| ven |veo} L1 L1
ol a hit miss
TLBT | TLBI 11 d-cache
l l l l LB (64 sets, 8 lines/set)
—
> hit —]
TLB > le—o,
miss N) S R N N
L1 TLB (16 sets, 4 entries/set)
v9 9 CRR. a0 § 12 40 6, 6
| VPN1 | VPN2 | VPN3 | vPNa | [een |pr0| => [o [alco)
t Physical
CR3 J J address I
PTEl > PTE || > PTE |l > PTE (PA)
Page tables

VPN - Virtual Page Number

VPO - Virtual Page Offset

TLB - Translation Look-aside Buffer
PPN - Physical Page Number

PPO - Physical Page Offset

TLBT - TLB Tag

TLBI - TLB Index

NAME

execl, execlp, execle, execv, execvp - execute a file
SYNOPSIS

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,

..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[);
DESCRIPTION

The exec() family of functions replaces the current process image with a new process
image. The functions described in this manual page are front-ends for the function execve(2)

NAME

fork - create a child process
SYNOPSIS

pid_t fork(void);

DESCRIPTION

fork() creates a child process that differs from the parent process only in its PID and PPID,
and in the fact that resource utilizations are set to 0.

Under Linux, fork() is implemented using copy-on-write pages, so the only penalty that it
incurs is the time and memory required to duplicate the parent’s page tables, and to create a
unique task structure for the child.

On success, the PID of the child process is returned in the parent’s thread of execution,
and a 0 is returned in the child’s thread of execution. On failure, a -1 will be returned in the
parent’s context, no child process will be created, and errno will be set appropriately.

NAME
dup, dup2 - duplicate a file descriptor
SYNOPSIS
int dup(int oldfd);
int dup2(int oldfd, int newfd);
DESCRIPTION
dup() and dup?2() create a copy of the file descriptor oldfd.

After a successful return from dup() or dup2(), the old and new file descriptors may be used
interchangeably. They refer to the same open file description (see open(2)) and thus share file
offset and file status flags; for example, if the file offset is modified by using Iseek(2) on one of the
descriptors, the offset is also changed for the other.

dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

NAME

wait, waitpid - wait for process to change state
SYNOPSIS

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
DESCRIPTION

All of these system calls are used to wait for state changes in a child of the calling process,
and obtain information about the child whose state has changed. A state change is considered to
be: the child terminated; the child was stopped by a signal; or the child was resumed by a signal.

In the case of a terminated child, performing a wait allows the system to release the
resources associated with the child; if a wait is not performed, then terminated the child remains
in a "zombie" state
If a child has already changed state, then these calls return immediately. Otherwise they block
until either a child changes state or a signal handler interrupts the call.

NAME
read - read from a file descriptor
SYNOPSIS
ssize_t read(int fd, void *buf, size_t count);
DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer starting at
buf.

NAME
fflush - flush a stream
SYNOPSIS
int fflush(FILE *stream);
DESCRIPTION
The function fflush() forces a write of all user-space buffered data for the given output or
update stream via the stream’s underlying write function.
The open status of the stream is unaffected.

NAME
connect - initiate a connection on a socket
SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);
DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd to the
address specified by addr. The addrlen argument specifies the size of addr. The format of the
address in addr is determined by the address space of the socket sockfd; see socket(2) for
further details.

If the socket sockfd is of type SOCK_DGRAM then addr is the address to which
datagrams are sent by default, and the only address from which datagrams are received. If the
socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call attempts to make a
connection to the socket that is bound to the address specified by addr.

Generally, connection-based protocol sockets may successfully connect() only once;
connectionless protocol sockets may use connect() multiple times to change their association.
Connectionless sockets may dissolve the association by connecting to an address with the
sa_family member of sockaddr set to AF_UNSPEC (supported on Linux since kernel 2.2).

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, -1 is returned, and errno
is set appropriately.

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>
uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
The htonl() function converts the unsigned integer hostlong from host byte order to network byte
order.

The htons() function converts the unsigned short integer hostshort from host byte order to
network byte order.

The ntohl() function converts the unsigned integer netlong from network byte order to host byte
order.

The ntohs() function converts the unsigned short integer netshort from network byte order to host
byte order.

On the i386 the host byte order is Least Significant Byte first, whereas the network byte order,
as used on the Internet, is Most Significant Byte first.

