Cache Memories

15-213: Introduction to Computer Systems
11th Lecture, Feb. 19, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, Greg Kesden

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

General Cache Concept (Reminder)

Example types of caches

- Hardware: L1 and L2 CPU caches, TLBs, ...
- Software: virtual memory, FS buffers, web browser caches, ...

Many common design issues

- each cached item has a “tag” (an ID) plus contents
- need a mechanism to efficiently determine whether given item is cached
 - combinations of indices and constraints on valid locations
- on a miss, usually need to pick something to replace with the new item
 - called a “replacement policy”
- on writes, need to either propagate change or mark item as “dirty”
 - write-through vs. write-back

Different solutions for different caches

- Lets talk about CPU caches as a concrete example...
CPU Cache Memories

- CPU Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory
- Typical system structure:

![CPU chip diagram]

General Cache Organization (S, E, B)

- E = \(2^e\) lines per set
- S = \(2^s\) sets
- B = \(2^b\) bytes per cache block (the data)

Cache size: \(C = S \times E \times B\) data bytes

Cache Read

- Locate set
- Check if any line in set has matching tag
- Yes + line valid: hit
- Locate data starting at offset

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set

Assume: cache block size 8 bytes

Address of int:

\(t\) bits

[0..100]

Find set
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

<table>
<thead>
<tr>
<th>valid? + match: assume yes = hit</th>
<th>t bits</th>
<th>0...01</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>tag</td>
<td>01234567</td>
<td></td>
</tr>
</tbody>
</table>

block offset

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

- M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set
- Address trace (reads, one byte per read):
 - 0: [0000], miss
 - 1: [0001], hit
 - 7: [0111], miss
 - 8: [1000], miss
 - 0: [0000], miss

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0</td>
<td>M[0-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>M[6-7]</td>
</tr>
</tbody>
</table>

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

<table>
<thead>
<tr>
<th>valid? + match: assume yes = hit</th>
<th>t bits</th>
<th>0...01</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>tag</td>
<td>01234567</td>
<td></td>
</tr>
</tbody>
</table>

find set

- E-way: 2 lines per set
- Address trace (reads, one byte per read):
 - 0: [0000], miss
 - 1: [0001], hit
 - 7: [0111], miss
 - 8: [1000], miss
 - 0: [0000], miss

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0</td>
<td>M[0-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>M[6-7]</td>
</tr>
</tbody>
</table>
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

- Compare both
- Valid? + Match: yes = hit

Block offset

2-Way Set Associative Cache Simulation

- T = 2
- S = 1
- B = 1

M = 16 byte addresses, B = 2 bytes/block,
S = 2 sets, E = 2 blocks/set

Address trace (reads, one byte per read):
0 [0000], miss
1 [0001], hit
7 [0111], miss
8 [1000], miss
0 [0000], hit

What about writes?

- Multiple copies of data exist:
 - L1, L2, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate
Intel Core i7 Cache Hierarchy

- **Processor package**
 - **Core 0**
 - Regs
 - L1 d-cache
 - L1 i-cache
 - L2 unified cache
 - **Core 3**
 - Regs
 - L1 d-cache
 - L1 i-cache
 - L2 unified cache
 - L3 unified cache (shared by all cores)

- **Main memory**

Cache Performance Metrics

- **Miss Rate**
 - Fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
 - Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- **Hit Time**
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
 - Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

- **Miss Penalty**
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

- **Huge difference between a hit and a miss**
 - Could be 100x, if just L1 and main memory

- **Would you believe 99% hits is twice as good as 97%?**
 - Consider:
 - cache hit time of 1 cycle
 - miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

- **This is why “miss rate” is used instead of “hit rate”**

Writing Cache Friendly Code

- **Make the common case go fast**
 - Focus on the inner loops of the core functions

- **Minimize the misses in the inner loops**
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

- **Key idea:** Our qualitative notion of locality is quantified through our understanding of cache memories
Back to Observations

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed (examples follow)
 - Nested loop structure
 - Blocking is a general technique
- All systems favor “cache friendly code”
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```c
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;
    for (i = 0; i < elems; i += stride)
        result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz) {
    double cycles;
    int elems = size / sizeof(int);
    test(elems, stride); /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
```
The Memory Mountain

Read throughput (MB/s)

Working set size (bytes)

A Ridge of Temporal Locality (s=16)

Main memory region | L3 cache region | L2 cache region | L1 cache region

Read throughput (MB/s)

Working set size (bytes)

Ridges of temporal locality

Slopes of spatial locality

The Memory Mountain

Read throughput (MB/s)

Working set size (bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip
A Slope of Spatial Locality (size=4MB)

- One access per cache line

The Memory Mountain

- Ridges of temporal locality
- Slopes of spatial locality

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Miss Rate Analysis for Matrix Multiply

- **Assume:**
 - Line size = 32B (big enough for four 64-bit words)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows

- **Analysis Method:**
 - Look at access pattern of inner loop
Matrix Multiplication Example

- Description:
 - Multiply N x N matrices
 - O(N^3) total operations
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - for (i = 0; i < N; i++)
 - sum += a[0][i];
 - accesses successive elements
 - if block size (B) > 4 bytes, exploit spatial locality
 - miss rate = 4 bytes / B
- Stepping through rows in one column:
 - for (i = 0; i < n; i++)
 - sum += a[i][0];
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
 A & B & C \\
 0.0 & 0.25 & 0.25
\end{array}
\]

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
 A & B & C \\
 0.0 & 0.25 & 0.25
\end{array}
\]

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
 A & B & C \\
 1.0 & 0.0 & 1.0
\end{array}
\]

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
 A & B & C \\
 1.0 & 0.0 & 1.0
\end{array}
\]
Summary of Matrix Multiplication

ijk (\& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (\& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (\& kji):
• 2 loads, 1 store
• misses/iter = 2.0

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

```c
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

```c
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Core i7 Matrix Multiply Performance

- Pay attention to spatial locality!
- Miss rate more important than # of mem refs
- Pay particular attention to inner loops (Amdahl's law)
- It's not that hard to do the analysis

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
Example: Matrix Multiplication

```c
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i*n+j] += a[i*n + k]*b[k*n + j];
}
```

Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)

- **First iteration:**
 - n/8 + n = 9n/8 misses

- **Second iteration:**
 - Again:
 - n/8 + n = 9n/8 misses

- **Total misses:**
 - 9n/8 * n^2 = (9/8) * n^3

Blocked Matrix Multiplication

```c
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i += B)
        for (j = 0; j < n; j += B)
            for (k = 0; k < n; k += B)
                /* B x B mini matrix multiplications */
                    for (i1 = i; i1 < i+B; i1++)
                        for (j1 = j; j1 < j+B; j1++)
                            for (k1 = k; k1 < k+B; k1++)
                                c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}
```
Cache Miss Analysis

Assume:
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B^2 < C

First (block) iteration:
- B^2/8 misses for each block
- 2n/B * B^2/8 = nB/4 (omitting matrix c)
- Afterwards in cache (schematic)

Second (block) iteration:
- Same as first iteration
- 2n/B * B^2/8 = nB/4

Total misses:
- nB/4 * (n/B)^2 = n^3/(4B)

Summary
- No blocking: (9/8) * n^3
- Blocking: 1/(4B) * n^3
- Suggest largest possible block size B, but limit 3B^2 < C!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n^2, computation 2n^3
 - Every array elements used O(n) times!
 - But program has to be written properly
A Higher Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

Assume: cold (empty) cache, `a[0][0]` goes here

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables `sum, i, j`

The Memory Mountain

![The Memory Mountain Diagram](image-url)

Intel Core i7
- 32 KB L1 i-cache
- 32 KB L1 d-cache
- 256 KB unified L2 cache
- 8M unified L3 cache

All caches on-chip

Slopes of spatial locality
The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip

Slopes of spatial locality
Ridges of Temporal locality

Read throughput (MB/s)

Stride (x8 bytes)

Working set size (bytes)