
Andrew login ID:

Full Name:

CS 15-213, Fall 2007

Exam 1
Wednesday October 17, 2007

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour full name and Andrew login ID
on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score ofXX points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then go back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like.Calculators are allowed, but
no other electronic devices. Good luck!

1 (8):

2 (8):

3 (8):

4 (6):

5 (8):

6 (8):

7 (10):

TOTAL (XX):

Page 1 of 10

Problem 1. (8 points):
Assume we are running code on an IA32 machine, which has a 32-bit word size and uses two’s complement
arithmetic for signed integers. Consider the following definitions:

int x = foo();
unsigned ux = x;

Fill in the empty boxes in the table below. For each of the C expressions in the first column, either:

• State that it is true of all possible values returned by foo(), or

• Give an example where it is not true.

Puzzle True / Counterexample

x < 0 ⇒ (x * 2) < 0 False (TMin)

x < 0 ⇒ (x-1) < 0

x >= 0 ⇒ ((x ˆ (x>>31))) <= 0

x > 0 ⇒ (x+ux) > 0U

x < 0 ⇒ (˜x+1) > 0

(˜(x>>31)+1) == (x<0)

(-(!x) & x) == 0

(˜(ux>>31) & ux) != ux

x >= 0 ⇒ -((˜x >> 1) + 1) > 0

Page 2 of 10

Problem 2. (8 points):
Consider the following 5-bit floating point representationbased on the IEEE floating point format. This
format does not have a sign bit – it can only represent nonnegative numbers.

• There arek = 3 exponent bits. The exponent bias is 3.

• There aren = 2 fraction bits.

Numeric values are encoded as a value of the formV = M × 2
E , whereE is exponent after biasing, and

M is the significand value. The fraction bits encode the significand valueM using either a denormalized
(exponent field 0) or a normalized representation (exponentfield nonzero).

Below, you are given some decimal values, and your task it to encode them in floating point format. If
rounding is necessary, you should useround-to-even, as you did in Lab 1 for thefloat i2f puzzle. In
addition, you should give the rounded value of the encoded floating point number. Give these as whole
numbers (e.g.,17) or as fractions in reduced form (e.g.,3/4).

Value Floating Point Bits Rounded value

9/32 001 00 1/4

7/8

15/16

9

10

Page 3 of 10

Problem 3. (8 points):
Consider the following C function’s x86-64 assembly code:

On entry %edi = n
#

0000000004004a8 <foo>:
4004a8: b8 00 00 00 00 mov $0x0,%eax
4004ad: 83 ff 01 cmp $0x1,%edi
4004b0: 7e 1a jle 4004cc <foo+0x24>
4004b2: 01 f8 add %edi,%eax
4004b4: ba 00 00 00 00 mov $0x0,%edx
4004b9: 39 fa cmp %edi,%edx
4004bb: 7d 08 jge 4004c5 <foo+0x1d>
4004bd: 01 d0 add %edx,%eax
4004bf: ff c2 inc %edx
4004c1: 39 fa cmp %edi,%edx
4004c3: 7c f8 jl 4004bd <foo+0x15>
4004c5: ff cf dec %edi
4004c7: 83 ff 01 cmp $0x1,%edi
4004ca: 7f e6 jg 4004b2 <foo+0xa>
4004cc: f3 c3 repz retq # treat repz as a no-op

Please fill in the corresponding C code:

int foo (int n) {
int a, i;

a = 0;
for (; n > _____; _____) {

a = a + _____;
for (i = _____; i < _____; _____)

a = a + _____;
}
return _____;

}

Page 4 of 10

Problem 4. (6 points):

Consider the C code below, where H and J are constants declared with #define .

int array1[H][J];
int array2[J][H];

int copy_array(int x, int y) {
array2[y][x] = array1[x][y];

return 1;
}

Suppose the above C code generates the following x86-64 assembly code:

On entry:
%edi = x
%esi = y
#
copy_array:

movslq %esi,%rsi
movslq %edi,%rdi
movq %rsi, %rax
salq $7, %rax
subq %rsi, %rax
addq %rdi, %rax
leaq (%rdi,%rdi,2), %rdi
addq %rsi, %rdi
movl array1(,%rdi,4), %edx
movl %edx, array2(,%rax,4)
movl $1, %eax
ret

What are the values ofHandJ?

H =

J =

Page 5 of 10

Problem 5. (6 points):
Consider the following C declarations:

typedef struct {
int x;
int y;
int sensor_id;

} Sensor;

typedef struct {
int sensor_id;
double data;

} Data;

typedef struct {
Sensor * sensor;
char status;

} Sensor_Status;

Sensor sensor;
Data data;
Sensor_Status status_array[10];

For all of the following,assume x86-64 alignment.

A. What is the total allocated space forsensor ? bytes

B. What is the total wasted space forsensor ? bytes

C. What is the total allocated space fordata ? bytes

D. What is the total wasted space fordata ? bytes

E. What is the total allocated space forstatus_array ? bytes

F. What is the total wasted space forstatus_array ? bytes

Page 6 of 10

Problem 6. (8 points):
Consider the following data structure declarations:

struct node {
struct data d;
struct node * next;

};

struct data {
int x;
char str[6];

};

Below are given four C functions and four x86-64 code blocks.Next to each of the x86-64 code blocks,
write the name of the C function that it implements.

int alpha(struct node * ptr) {
return ptr->d.x;

}

char * beta(struct node * ptr) {
ptr = ptr->next;
return ptr->d.str;

}

char gamma (struct node * ptr) {
return ptr->d.str[4];

}

int * delta (struct node * ptr) {
struct data * dp =

(struct data *) ptr;
return &dp->x;

}

movq 16(%rdi), %rax
addq $4, %rax
ret

movq %rdi, %rax
ret

movl (%rdi), %eax
ret

movsbl 8(%rdi),%eax
ret

Page 7 of 10

Reverse Engineering Switch Code

The next problem concerns the code generated byGCC for a function involving a switch statement. Follow-
ing a bounds check, the code uses a jump to index into the jump table

400476: ff 24 d5 a0 05 40 00 jmpq * 0x4005a0(,%rdx,8)

UsingGDB, we extract the 8-entry jump table as:

0x4005a0: 0x0000000000400480 0x0000000000400491
0x4005b0: 0x0000000000400480 0x0000000000400496
0x4005c0: 0x0000000000400480 0x0000000000400489
0x4005d0: 0x0000000000400485 0x0000000000400496

The following block of disassembled code implements the branches of the switch statement

400480: 48 8d 04 3f lea (%rdi,%rdi,1),%rax
400484: c3 retq
400485: 48 0f af f7 imul %rdi,%rsi
400489: 48 89 f8 mov %rdi,%rax
40048c: 48 21 f0 and %rsi,%rax
40048f: 90 nop
400490: c3 retq
400491: 48 8d 04 37 lea (%rdi,%rsi,1),%rax
400495: c3 retq
400496: 48 8d 46 ff lea 0xffffffffffffffff(%rsi),%rax
40049a: c3 retq

Page 8 of 10

Problem 7. (10 points):
Fill in the blank portions of the C code below to reproduce thefunction corresponding to this object code.
You can assume that the first entry in the jump table is for the case whens equals 0. Parametersa, b, and
s are passed in registers%rdi , %rsi , and%rdx , respectively.

long fun(long a, long b, long s)
{

long result = 0;
switch (s) {
case ___:
case ___:

result = _____;
break;

case ___:
b = _____;
/ * Fall through * /

case ___:
result = _____;
break;

case ___:
result = _____;
break;

default:
result = _____;

}
return result;

}

Page 9 of 10

Problem 8. (16 points):

Consider a computer with an 8-bit address space and an associative 64-byte data cache, with a LRU re-
placement policy. Assume that the cache is 2-way set associative and has 8-byte cache lines. The boxes
below represent the bit-format of a physical address. In each box, indicate which field that bit represents
(it’s possible that a field doesn’t exist). Here are the fields:

CO The byte offset within the cache line

CI The cache (set) index

CT The cache tag

7 6 5 4 3 2 1 0

The table below on the left shows a trace of load addresses accessed in the data cache. Below on the right
is a list of possible final states of the cache, showing the hexvalue of the tag for each cache line in each set.
Which is the correct final cache state? How many of the loads were hits? Assume that initially all cache
lines are invalid (represented by X), and thatsets are filled from left to right.

Load No. Hex Address Binary Address

1 1a 0001 1010
2 55 0101 0101
3 e6 1110 0110
4 53 0101 0011
5 77 0111 0111
6 28 0010 1000
7 94 1001 0100
8 a6 1010 0110
9 75 0111 0101
10 c7 1100 0111
11 56 0101 0110

(a)
Set 3 Set 2 Set 1 Set 0
0 X 4 2 1 X 6 5

(b)
Set 3 Set 2 Set 1 Set 0
0 X 2 3 1 X 6 5

(c)
Set 3 Set 2 Set 1 Set 0
0 X 2 4 1 X 6 5

(d)
Set 3 Set 2 Set 1 Set 0
0 X 2 3 1 X 7 6

(e)
Set 3 Set 2 Set 1 Set 0
0 X 4 2 1 X 7 6

(f)
Set 3 Set 2 Set 1 Set 0
X 0 5 2 1 3 7 6

(g)
Set 3 Set 2 Set 1 Set 0
0 2 4 2 1 3 5 6

Correct final state: Number of hits:

Page 10 of 10

Problem 9. (7 points):
Consider the C code below:

int forker(int x) {
int pid;

printf("A");
if (x > 0) {

pid = fork();
printf("B");
if (pid == 0) {

printf("C");
} else {

waitpid(pid, NULL, 0);
printf("D");
if (x == 5) {

pid = fork();
if (pid != 0) {

exit(8);
}
printf ("E");

}
}

}
printf("F");
exit(4);

}

Consider each of the following outputs and circle the ones that could be produced by the code above (after
all processes are terminated).

AA

ABCDEF

ABCBFDF

ABCBDFF

ABCBFDE

ABCFBDF

ABBCFDEF

Page 11 of 10

