Floating Point and Datalab
Announcements

- Datalab due Thursday Jan 28th at 11:59pm.
- You must make an official handin through Autolab. An unofficial handin will not be graded and your most recent official handin will be graded.
- Office Hours in WEH 5207 Sun-Thurs 6pm-9pm.
- IRC Chat Room ##213.
Floating Point IEEE Standard

E = exp - bias
Bias = $2^{(k-1)} - 1$
Value = $(-1)^s \times M \times 2^E$

Note: exponent boundary is NOT aligned with byte boundary e.g. 0xFF7FFFFF has lowest exponent bit zero (is normalized v.)

For a double precision floating point number, $k = 11$, $n = 52$
Floating Point Normalization

- If exp is > 0 (and not all ones), then the mantissa has an assumed leading 1.
- 0x81200000
- Sign bit = ?
- Exponent = ?
- Mantissa = ?
- Final value = ?
Denormalization

- When exp = 0, it is a denormalized number.
- Formula for denormalized:
 - Value = \((-1)^s \times M \times 2^{(exp-bias+1)}\)
- In a denormalized number, there is no assumed leading 1 in the Mantissa.
Representing Zero

- Since there is a sign bit, there exist both a positive and negative representation for zero.
- 0x80000000 and 0x00000000
Not a Number (NaN) and Infinity

- Definition of NaN: exp = 0xFF and M>0
- The IEEE floating point standard gives both a positive representation of infinity and a negative one.
 - 0xFF800000 = Negative infinity.
 - 0x7F800000 = Positive infinity.

- Note the difference between infinity and NaN.
Round to Even

- How do we make rounding unbiased?
 - Answer: Round to nearest even number
- “Even” when least significant bit is 0
- “Half way” when bits to right of rounding position = 100...
- Only apply rule when number is halfway. Otherwise, closest number.
Floating point decision diagram

\[x = (-1)^s \times 2^{1-Bias} \times 0.M \]

- **exp == 0?**
 - YES: \[x = (-1)^s \times 0 \]
 - NO: \[x = (-1)^s \times 2^{-exp-bias} \times 1.M \]
- **exp all 1's?**
 - YES: \[x = (-1)^s \times 2^{bias} \times 0.M \]
 - NO: \[x = (-1)^s \times 2^{bias} \times 1.M \]
- **Is s == 0?**
 - YES: \[+\infty \]
 - NO: \[-\infty \]
- **Is M == 0?**
 - YES: \[NaN \]
 - NO: \[x = (-1)^s \times 2^{bias} \times 1.M \]
3/8 = 1.1 \times 2^{-2}

Bias = 2^{(8-1)} - 1 = 127

s = 0, e = -2 + Bias = 125, M = 0x400000

0 01111101 10000000000000000000000000000000

S Exponent Mantissa
Problem 3. (12 points):
Consider the following two 8-bit floating point representations based on the IEEE floating point format.
Neither has a sign bit—they can only represent nonnegative numbers.
1. Format A
 • There are \(k = 3 \) exponent bits. The exponent bias is 3.
 • There are \(n = 5 \) fraction bits.
2. Format B
 • There are \(k = 5 \) exponent bits. The exponent bias is 15.
 • There are \(n = 3 \) fraction bits.
<table>
<thead>
<tr>
<th>Format A</th>
<th>Format B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>Value</td>
</tr>
<tr>
<td>011 00000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>53/16</td>
</tr>
<tr>
<td>000 00001</td>
<td></td>
</tr>
</tbody>
</table>
Old Exam Question Answer

<table>
<thead>
<tr>
<th>Format A</th>
<th>Format B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>Value</td>
</tr>
<tr>
<td>011 00000</td>
<td>1</td>
</tr>
<tr>
<td>110 11100</td>
<td>15</td>
</tr>
<tr>
<td>100 10101</td>
<td>$\frac{53}{16}$</td>
</tr>
<tr>
<td>111</td>
<td>+ Inf</td>
</tr>
<tr>
<td>00000</td>
<td>1/128</td>
</tr>
<tr>
<td>000 00001</td>
<td></td>
</tr>
</tbody>
</table>
greatestBitPos - return a mask that marks the position of the most significant 1 bit. If \(x == 0 \), return 0

Example: greatestBitPos(96) = 0x40

Legal ops: \(! \, ~ \, & \, ^\wedge \, | \, + \, << \, >>\)

Max ops: 70 Rating: 4

greatestbitpos(int x)

Solve on blackboard...
Good Coding Style

- Consistent indentation
- Avoid long sequences of commands without a comment
- Each source file should have an appropriate header
- Have a brief comment at the beginning of each function