
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243 Spring 2010

April 19, 2009

Threading and Thread Safety

Updated version of Fall 2002, Spring 2009 recitation slides

Carnegie Mellon

Overview

� News

� Threading

� Basics

� Thread Lifecycle

� Thread Safety� Thread Safety

� Race Conditions

� Synchronization Techniques

� Proxy Lab

Carnegie Mellon

News

� Proxy due Thursday, April 29th

� Last Day to submit: May 2nd

� Final exam: Monday May 10, at 5:30 pm

Carnegie Mellon

Threading

Carnegie Mellon

Multi-Threaded process

Thread 1 context:
Data registers
Condition codes
SP-1
PC-1

stack 1

Thread 1

Thread 2 context:
Data registers
Condition codes
SP-2
PC-2

stack 2

Thread 2

Thread N context:
Data registers
Condition codes
SP-N
PC-N

stack N

Thread N

…

shared libraries

run-time heap

0

read-only data

code

Kernel context:
VM structures

Descriptor table

Shared resources:

writable data

Private Address Space

Carnegie Mellon

Posix Threads (Pthreads) Interface

� Standard interface for ~60 functions

� Creating and reaping threads.

� pthread_create

� pthread_join

� pthread_detach

� Determining your thread ID

� pthread_self

� Terminating threads

� pthread_cancel

� pthread_exit

� Synchronizing access to shared variables

� sem_init

� sem_wait

� sem_post

� pthread_rwlock_init

� pthread_rwlock_[wr]rdlock

Carnegie Mellon

Multi-threaded Hello World

/* hello.c - Pthreads "hello, world" program */

#include "csapp.h"

void *thread(void *vargp);

int main() {

pthread_t tid;

int i;

Thread attributes

(usually NULL)

Start routine int i;

for(i = 0; i < 42; ++i) {

pthread_create(&tid, NULL, thread, NULL);

pthread_join(tid, NULL);

}

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

printf("Hello, world!\n");

return NULL;

}

Start routine

arguments

return value

Start routine

Carnegie Mellon

Exiting a process and thread

� pthread_exit() only terminates the current
thread, NOT the process

� exit() terminates ALL the threads in the
process, i.e., the process itselfprocess, i.e., the process itself

Carnegie Mellon

Joinable & Detached Threads

� Joinable thread can be reaped and killed by other
threads

� must be reaped (with pthread_join) to free memory

resources.

Detached thread cannot be reaped or killed by other � Detached thread cannot be reaped or killed by other
threads

� resources are automatically reaped on termination.

� Default state is joinable

� use pthread_detach(pthread_self()) to make detached.

Carnegie Mellon

Thread Safety

Carnegie Mellon

Race condition

� A race occurs when the correctness of a program
depends on one thread reaching point x in its control
flow before another thread reaches point y.

� Access to shared variables and data structures

� Threads dependent on a condition

� Use synchronization to avoid race conditions

� Ways to do synchronization
� Semaphores

� Mutex

� Read-write locks

Carnegie Mellon

Synchronization

� Semaphore
� Restricts the number of threads that can access a

shared resource

� Mutex
� Special case of semaphore that restricts access to

one thread

� Read-write locks
� Multiple readers allowed

� Single writer allowed

� No readers allowed when writer is present

Carnegie Mellon

Semaphore

� Classic solution: Dijkstra's P and V operations on
semaphores.

� Semaphore: non-negative integer synchronization
variable.

� P(s): [while (s == 0) wait(); s--;]

� V(s): [s++;]

� OS guarantees that operations between brackets [] are
executed indivisibly.

� Only one P or V operation at a time can modify s.

� Semaphore invariant: (s >= 0)

� Initialize s to the number of simultaneous threads allowed

Carnegie Mellon

Posix synchronization functions

� Semaphores

� sem_init

� sem_wait

� sem_post

� Read-write locks

� pthread_rwlock_init

� pthread_rwlock_rdlock

� Pthread_rwlock_wrlock

Carnegie Mellon

Proxy Lab

� Graceful error handling

� Document design decisions

� Code organization

� Break proxy into multiple functions

� Complete lab in three stagesComplete lab in three stages

� Basic sequential proxy

� Handling concurrent requests

� Caching

� Understand what is robust about the rio package

� Behavior of network sockets

Carnegie Mellon

Testing

� Test these websites:

� http://www.cs.cmu.edu/~213

� http://www.cs.cmu.edu

� http://www.newyorktimes.com

� http://www.cnn.com� http://www.cnn.com

� http://www.youtube.com

� Find a website that changes frequently to
test your caching

Carnegie Mellon

Proxy Grade

� Basic sequential proxy: 30 points

� Handling concurrent requests: 30 points

� Caching: 30 points

� Style: 10 points� Style: 10 points

� Total: 100 points

Carnegie Mellon

Questions?

