15-213:

Introduction to Computer Systems

It's “fun”

Buffer Lab, Shell Lab, Errors,
and Coding Style

Recitation n
Monday October 5th, 2009

Slides by: Hunter Pitelka

Schedule

Last Minute Bufferlab questions
Quick 1ntro to shell lab

Correctly handling Error Conditions
Code Style

Bufferlab

e Due Tomorrow (10/6) at 11:59:59pm to autolab.

e The grade autolab shows you 1s NOT your
actual final grade.

— We wil
verity tl

| g0 over your submissions by hand and
Ney are correct

— Just foll
points.

low what the writeup says, and you'll get full

— Do not jump past any stage verifications, or just

straight

to the validate function!

Final (quick) Butferlab Questions?

System Call Error Handling

e Sometimes things go wrong.

— |In the OS
— On Disk
— Across the Network.

* You will be told about these errors though a
system call failing.

e You MUST handle these errors in a “correct”
manner.
— What does correct mean?

System Call Error Handling

e How do we handle errors?
— Notify the user.
— Try again.
— Try something different.
— Abort.

 What you do depends on what happened.

— No correct answer for every error condition.
— Consult man pages to educate your decision.

System Call Error Handling

fork() man page

RETURN VALUE

On success, the PID of the child process is returned in the
parent, and 0 is returned in the child. On failure, -1 is returned in the
parent, no child process is created, and errno is set appropriately.

ERRORS
ENOMEM fork() failed to allocate the necessary kernel structures
because memory is tight.

System Call Error Handling

RETURN VALUE

On success, the number of bytes read is returned (zero indicates
end of file), and the file position is advanced by this number. It is not an
error if this number is smaller than the number of bytes requested.... On
error, -1 is returned, and errno is set appropriately.

ERRORS
EAGAIN Non-blocking I/0 has been selected using O NONBLOCK and no data
was immediately available for reading.

EBADF fd is not a valid file descriptor or is not open for reading.

EFAULT buf is outside your accessible address space.

EIO I/0 error. This will happen for example when the process 1is
in a background process group, tries to read from its controlling tty, and
either it is ignoring or blocking SIGTTIN or its process group is orphaned.
It may also occur when there is a low-level I/0 error while

reading from a disk or tape.

EISDIR fd refers to a directory.

System Call Error Handling

e Can you recover from the error and continue
execution?
— Then do 1t!

— Inform the user what went wrong, ask them to fix it
if possible, and continue running.

* There 1s no way to continue execution
— Inform the user why you are exiting
— Clean up
— Exit gracefully.

Good Code Style

Good Code Style = readability
Commenting
Use of whitespace
Variable names

Stralghthrward loglc (not always possible)

Commenting

 Comments should explain your code, and your
thinking.

 Comments should NEVER contain code!!!
— [lprintf(“debug value is %d\n”,value);
— [*This does (x *y) N z*/

o If your code doesn't need a comment, then don't
comment 1t!
—var = X +y; /[*this stores x +y into var*/

Commenting

e As a general rule, you should explain every
— File
— Function
— loop/conditional
— Confusing block of code. (aka Algorithm)

e If your comments do not add to the readability
of code, then take them out.

 Humor 1s okay, obscenities are mosy not okay.

Use of whitespace

* In general, whitespace increases readability.

int replaceByte(int x, 1nt n, 1int c) {
int bytePos = n << 35

int replacement = c¢ << 1ndex;

int byteMask = (0xFF) << index;

mask = ~mask;

return (byteMask & x) | replacement;

int replaceByte(int x, int n, int c)
int bytePos = n << 35

int replacement = ¢ << 1ndex;
int byteMask = (0xFF) << index;
mask = ~mask;

return (byteMask & x) | replacement;

}

Use of Whitespace

e All code and comments in a block of code
should be indented to the same level

— A “block™ 1s everything inside a function, loop,
conditional, or otherwise separated code.

void fun(arg_t arg) {
/*this function rocks*/

Var = statement;

Var = awesomeStatement;
/*now for something completely
different*/

Var3=coolStatement;

Vard4= leetHax;

void fun(arg_t arg) {

/*this function rocks!*/

Var = statement;

Var = awesomeStatement;

/*now for something completely
different*/

Var3=coolStatement;

Vard4= leetHax;

Use of Whitespace

e Tabs vs. Spaces

— Lets not go there.

o Either, always use tabs, or always use spaces!
e Excessive Whitespace

— More than one blank line 1s usually necessary

 Whitespace & Comments

— Aligning comments 1s acceptable, but either do 1t
always, or don't do 1t at all.

Variable Names

Should be descriptive

Should explain what 1s being stored in the
variable

Do not use single letter variable names

—1,],k are okay for loop iterators

Use either camelCase or under scores.

— Pick one and stick with 1t!

Straightforward Logic

 Your code should be

char *p;
easy toread and easy ., .., (n)
to understand. { ,
case 1:
p = "one";
if (0)
case 2:
if(a) p = "two";
if (b) x=y; if (0)
else x=z; case 3:
p = "three'";

printf ("%$s", p);
break;

Braces

e {'sand }'s should always be used:

if (a)
1f(b) x=y;
else x=z;

It doesn't matter what line they are
placed on, just use them, and be

consistent. F(a) |
1f (b) {
X=Yi
telse/
X=Z,;
}
}

char * answerStyleQuestion (char * input) {
if(strcmp (input,”is this good style?”) ==0) {
return “what do you think?”

}else/{
return pokeTA (input) ;

tshlab

e Write a shell for unix.

— Process Control
— I/O Redirection

e Read the handout, and READ MAN PAGES!!

— You will need to know many details about how
system functions work in order to write this lab.

 An emphasis on interaction with the system.

kthxbai

	Slide 1
	15-213-S09 Recitation #1 Jernej Barbic (S06) Revised: Alex Gartrell (S09)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

