
15-213/18-243
Recitation #5

February 22, 2010

2/22/10 1Carnegie Mellon University

Today
 Announcements

 Buflab and Stack Review

 Structs

 Optimization Basics

 Memory Hierarchy and Caching

2/22/10 2Carnegie Mellon University

Announcements
 Datalab can be picked up at the ECE Course Hub,

which is on the D level of Hammerschlag.

 Buflab due this Thursday, 2/25

 Exam 1 in class next Tuesday, 3/02

2/22/10 3Carnegie Mellon University

Buflab

2/22/10 4Carnegie Mellon University

x86 Stack Frame

• Consider when this function
from Buflab is about to call
Gets().

int getbuf()
{
 char buf[32];
 Gets(buf);
 return 1;
}

Return Address

Old %ebp

&buf

buf

%ebp

%esp

Caller’s Data

&buf

2/22/10 5Carnegie Mellon University

x86 Stack Frame

• What happens if we
overflow buf?

int getbuf()
{
 char buf[32];
 Gets(buf);
 return 1;
}

Return Address?

Old %ebp?

&buf

Filled buf

%ebp

%esp

Caller’s Data?

&buf

2/22/10 6Carnegie Mellon University

x86 Stack Frame

• What if we set the return
address to &buf?
• What if we don’t know what

&buf is?

int getbuf()
{
 char buf[32];
 Gets(buf);
 return 1;
}

&buf

Old %ebp?

&buf

Executable

Code

%ebp

%esp

Caller’s Data?

&buf

2/22/10 7Carnegie Mellon University

Questions?

2/22/10 8Carnegie Mellon University

Structs

2/22/10 9Carnegie Mellon University

Structs
 Allow you to declare a contiguous block of memory

which can include various data types.

 Types are subject to alignment rules (Why?).

struct node
{
char c;
int x;

} 0 1 4 8

2/22/10Carnegie Mellon University 10

c x

Old Exam Question
 Show the memory layout of the following struct on

a 64-bit (x86_64) machine.
 Reorder the fields to have a more optimal packing.
struct foo
{

char a[9];
short b[3];
float c;
char d;
int e;
char *f;
short g;

}

2/22/10Carnegie Mellon University 11

Old Exam Question
 Show the memory layout of the following struct on

a 64-bit (x86_64) machine.
 Reorder the fields to have a more optimal packing.
struct foo
{ Answers:

char a[9]; AAAAAAAAAxB1B2B3
short b[3]; CCCCDxxxEEEExxxx
float c; FFFFFFFFGGxxxxxx
char d;
int e; FFFFFFFFCCCCEEEE
char *f; B1B2B3GGAAAAAAAA
short g; ADxxxxxx

}

2/22/10Carnegie Mellon University 12

Questions?

2/22/10 13Carnegie Mellon University

Optimization

2/22/10 14Carnegie Mellon University

Common Sub Expression
Elimination

void func(int a, int b, char data[])
{
for(int i=0; i<10; i++)

if(data[i] < ‘z’ && data[i] != ‘\n’)
data[i]++;

}

 You could declare char c = data[i] before the
if statement to avoid recalculating and re-
accessing data[i].

2/22/10 15Carnegie Mellon University

Code Hoisting
void func(int a, int b, char data[])
{
for(int i=0; i<10; i++)

data[a*b+i] = ‘A’;
}

 You can calculate a*b outside the loop instead of
every iteration.

 This also applies to loop limits, i.e. if we had
i<(a+b)

2/22/10 16Carnegie Mellon University

Loop Unrolling
 A technique to reduce loop overhead.

 When accessing array elements, why not go two or
more at a time?

 This results in fewer iterations, which means fewer
jumps and condition checking.

 However, it adds code bloat.

 All that extra code may not fit in the instruction
cache.

2/22/10 17Carnegie Mellon University

Optimization Blockers
 As good as compilers can be at optimizing,

sometimes we can help it do better.

 Function calls can add a lot of overhead.
 You move function code into the main procedure at

the cost of lower modularity and added code bloat.
 The inline keyword or preprocessor macros can

have the compiler do this for you.

 Memory aliasing
 The compiler doesn’t know if more than one pointer

is accessing the same memory location.
 Use a temporary variable to do a calculation and

store the result in memory when you’re done.

2/22/10 18Carnegie Mellon University

Questions?

2/22/10 19Carnegie Mellon University

A Gentle Introduction
to Caching

2/22/10 20Carnegie Mellon University

Memory Hierarchy
Small, Fast,
Expensive

Large, Slow,
Cheap

2/22/10 21Carnegie Mellon University

Caching Introduction
 When memory is accessed, it tends to be accessed

again within a short amount of time.

 Instead of accessing slow memory twice, stash a
copy in a faster memory.

 Cache “Hit” when memory being accessed is
cached, Cache “Miss” otherwise.

 Hit/Miss rate is the ratio of cache hits/misses to
total memory accesses, respectively.

2/22/10Carnegie Mellon University 22

Cache Types
 Direct Mapped

 Data at each memory address is loaded into a
specific cache block.

 Hardware is simple, but you can end up lots of
collisions if multiple variables vie for the same block.

 n-Way Associative
 Data at each memory address can be loaded into one

of n cache blocks.
 Fewer collisions, but how do you figure out which

cache block to fill, or which block has your data?

2/22/10Carnegie Mellon University 23

Review
 Buflab Thursday, Exam 1 next week.

 Stack Review

 Structs

 Optimization Basics

 Memory Hierarchy and Caching
 Plenty more on these in lecture this week.

 Questions?

2/22/10 24Carnegie Mellon University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

