15-213/18-243
Recitation #5

February 22, 2010




Today

Announcements
Buflab and Stack Review
Structs

Optimization Basics

Memory Hierarchy and Caching




Announcements

* Datalab can be picked up at the ECE Course Hub,
which is on the D level of Hammerschlag.

* Buflab due this Thursday, 2/25

® Exam 1 in class next Tuesday, 3/02




Buflab




x86 Stack Frame

* Consider when this function
from Buflab is about to call
Gets().

int getbuf()

{
char buf[32];
Gets(buf);
return 1;

¥

%ebp

&buf
%esp




x86 Stack Frame

* What happens if we
overflow buf?

int getbuf()

{
char buf[32];
Gets(buf);
return 1;

¥

%ebp

&buf
%esp




x86 Stack Frame

* What if we set the return

address to &buf?

* What if we don’t know what

&buf is?

int getbuf()

{

char buf[32];
Gets(buf);
return 1;

%ebp




Questions?




Structs




Structs

® Allow you to declare a contiguous block of memory
which can include various data types.

* Types are subject to alignment rules (Why?).

struct node

char c; C X
int x;

¥ 0 1 4 8




Old Exam Question

®* Show the memory layout of the following struct on
a 64-bit (x86_64) machine.

® Reorder the fields to have a more optimal packing.
struct foo

{

char a[9];
short b[3];
float c;
char d;

int e;

char *f;
short g;




Old Exam Question

®* Show the memory layout of the following struct on
a 64-bit (x86_64) machine.

® Reorder the fields to have a more optimal packing.

struct foo

{ Answers:
char a[9]; AAAAAAAAAXB1BZB3
short b[3]; CCCCDxxxEEEExxxx
float c; FFFFFFFFGGXXXXXX
char d;
int e; FFFFFFFFCCCCEEEE
char *f; B1BZ2B3GGAAAAAAAA

short g; ADXXXXXX

s




Questions?




Optimization




Common Sub Expression
Elimination

void func(int a, int b, char datal])

{
for(int 1=0; 1<10; 1++)
1f(data[1] < ‘z’ && data[1i] !'= ‘\n’)
data[1]++;
ks

®* You could declare char ¢ = data[1] before the
1f statement to avoid recalculating and re-
accessing data[1].




Code Hoisting

void func(int a, int b, char datal])
{

for(int 1=0; 1<10; 1++)
data[a*b+i] = ‘A’;
3

® You can calculate a*b outside the loop instead of
every iteration.

® This also applies to loop Iimits, i.e. if we had
1<(a+b)




Loop Unrolling

A technique to reduce loop overhead.

When accessing array elements, why not go two or
more at a time?

This results in fewer iterations, which means fewer
jumps and condition checking.

However, It adds code bloat.

All that extra code may not fit in the instruction
cache.




Optimization Blockers

®* As good as compilers can be at optimizing,
sometimes we can help it do better.

® Function calls can add a lot of overhead.
® You move function code into the main procedure at
the cost of lower modularity and added code bloat.
* The 1nline keyword or preprocessor macros can
have the compiler do this for you.

®* Memory aliasing
® The compiler doesn’t know If more than one pointer
IS accessing the same memory location.
® Use a temporary variable to do a calculation and
Bstore the result in memory when you're done. s

ety




Questions?




A Gentle Introduction
to Caching




Memory Hierarchy

Small, Fast,
Expensive

Registers

L1 Cache (SRAM)

L2 Cache (SRAM)

vy

Main Memory (DRAM)

~

Local Storage (Disk)

=
Remote Storage
(Tape, Web)




Caching Introduction

When memory is accessed, it tends to be accessed
again within a short amount of time.

Instead of accessing slow memory twice, stash a
copy In a faster memory.

Cache “Hit” when memory being accessed is
cached, Cache “Miss” otherwise.

Hit/Miss rate is the ratio of cache hits/misses to
total memory accesses, respectively.




Cache Types

® Direct Mapped

® Data at each memory address is loaded into a
specific cache block.

® Hardware is simple, but you can end up lots of
collisions if multiple variables vie for the same block.

®* n-Way Associative

® Data at each memory address can be loaded into one
of n cache blocks.

® Fewer collisions, but how do you figure out which
cache block to fill, or which block has your data?




Review

Buflab Thursday, Exam 1 next week.
Stack Review

Structs

Optimization Basics

Memory Hierarchy and Caching
® Plenty more on these in lecture this week.

Questions?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

