
Andrew login ID (please
print in capital letters):

Full Name:

Recitation Section:

15-213/18-243, Spring 2009
Final Exam

Tuesday, May 12, 2009

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name, Andrew login ID, and
recitation section (A–H) on the front.

• The exam has a maximum score of 200 points.

• This exam is OPEN BOOK. You may use any books or notes you like. No calculators or other
electronic devices are allowed.

Virtual Memory 1 (20):

System-Level IO 2 (15):

Cache Memories 3 (20):

Signals 4 (15):

Assembly 5 (15):

Network Programming 6 (10):

Floating Point 7 (15):

Dynamic Memory 1 8 (10):

Dynamic Memory 2 9 (10):

Stack 1 10 (20):

Stack 2 11 (30):

Multithreading 12 (20):

TOTAL (200):

Page 1 of 34

Problem 1. (20 points):
VM On a Boat

In this question you will perform a virtual to physical address translation for a hypothetical virtual memory
architecture.

The specifications for the system are as follows:

• Virtual addresses are 16 bits in length

• The page size is 64 bytes

• The system operates on a two level page table structure, which is organized as follows:

– The page directory has 16 entries, each of which is 2 bytes in length
– Each page table has 64 entries, each of which is 2 bytes in length

• Each page directory entry encodes the address of the page table in its upper bits, and the lowermost
bit is a valid bit, where P = 1 indicates that the page table is present.

• Each page table entry encodes the physical page number in its upper bits, and the lowermost bit is a
valid bit, where P = 1 indicates that the page frame is present.

Below is a memory dump of various regions of memory. The left column of each table stores the address,
and the right column stores the value at that address.

Address Value
0x0200 0x1401
0x0206 0x1481
0x020c 0x1501
0x0212 0x1581
0x0224 0x1600
0x0228 0x1681
0x022c 0x1700
0x0230 0x1781
0x1408 0x3201
0x1410 0x3301
0x1420 0x3400
0x1440 0x3501
0x1480 0x3600
0x1488 0x3701
0x1490 0x3800
0x14a0 0x3901
0x14c0 0x3a01
0x1500 0x3b01
0x1508 0x3c00
0x1510 0x3d01
0x1520 0x3e01
0x1540 0x3f01
0x1580 0x4001

Address Value
0x1588 0x4101
0x1590 0x4200
0x15a0 0x4301
0x15c0 0x4401
0x1600 0x4501
0x1604 0x4600
0x1612 0x4701
0x1624 0x4801
0x1648 0x4900
0x1680 0x4a01
0x1684 0x4b00
0x1692 0x4c01
0x16a4 0x4d00
0x16c8 0x4e01
0x1704 0x4f01
0x1712 0x5001
0x1724 0x5101
0x1748 0x5201
0x1784 0x5301
0x1792 0x5401
0x17a4 0x5501
0x17c8 0x5600
0xdead 0xbeef

Page 2 of 34

Part I

Process 1 is trying to read at virtual address 0x683B. The page directory base register for this process
stores the value 0x0200. Answer the following questions. Use the space below for your calculations and
working. To facilitate the awarding of partial credit, please note down any memory addresses looked
up, and the values they contained.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1. What is the address of the page directory entry?

2. What is stored in the page directory entry?

3. What is the address of the page table entry?
OR The page table is not present (circle if true)

4. What is the physical address accessed?
OR There was a page fault (circle if true)

Page 3 of 34

Part II

Process 2 is trying to write to virtual address 0x44A3. The page directory base register for this process
stores the value 0x0220. Answer the following questions. Use the space below for your calculations and
working. To facilitate the awarding of partial credit, please note down any memory addresses looked
up, and the values they contained.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1. What is the address of the page directory entry?

2. What is stored in the page directory entry?

3. What is the address of the page table entry?
OR The page table is not present (circle if true)

4. What is the physical address accessed?
OR There was a page fault (circle if true)

Page 4 of 34

Problem 2. (15 points):
File Descriptor Mania

Suppose the file ./file1.txt has the following contents:

aabbccdd

And we have the following C files compiled to ./program1 and ./program2, respectively.

/*
* Program1

*/
#include <unistd.h>
#include <fcntl.h>

int main()
{

int pid, fd_x, fd_y, fd_z;
char buf[8];

fd_x = open("file1.txt", O_RDWR);
fd_y = open("file1.txt", O_RDWR);
fd_z = open("file1.txt", O_RDWR);

read(fd_x, buf, 2);
read(fd_y, buf+2, 4);

if ((pid = fork()) == 0) {
dup2(fd_x, STDOUT_FILENO);
dup2(fd_y, STDIN_FILENO);
execl("program2", "program2", NULL);

}

wait(NULL);

read(fd_y, buf+6, 2);
write(fd_z, buf+6, 2);
write(fd_x, buf+4, 2);
write(fd_x, buf+2, 2);

close(fd_x);
close(fd_y);
close(fd_z);

}

Page 5 of 34

/*
* Program2

*/
#include <unistd.h>
#include <fcntl.h>

int main()
{

char buf[2];

read(STDIN_FILENO, buf, 2);
write(STDOUT_FILENO, buf, 2);

}

What is the contents of file1.txt after ./program1 executes? Assume that reads and writes are not
cached.

Page 6 of 34

Problem 3. (20 points):
We consider a 128 byte data cache that is 2-way associative and can hold 4 doubles in every cache line. A
double is assumed to require 8 bytes.

For the below code we assume a cold cache. Further, we consider an array A of 32 doubles that is cache-
aligned (that is, A[0] is loaded into the first slot of a cache line in the first set). All other variables are
held in registers. The code is parameterized by positive integers m and n that satisfy m*n = 32 (i.e., if you
know one you know the other).

Recall that miss rate is defined as #misses
#accesses .

float A[32], t = 0;
for(int i = 0; i < m; i++)
for(int j = 0; j < n; j++)
t += A[j*m + i];

Answer the following:

1. How many doubles can the cache hold?

2. How many sets does the cache have?

3. For m = 1:

(a) Determine the miss rate.

(b) What kind of misses occur?

(c) Does the code have temporal locality with respect to accesses of A and this cache?

Page 7 of 34

4. For m = 2:

(a) Determine the miss rate.

(b) What kind of misses occur?

5. For m = 16:

(a) Determine the miss rate.

(b) What kind of misses occur?

(c) Does the code have spatial locality with respect to accesses of A and this cache?

Page 8 of 34

Problem 4. (15 points):
You may have taken 15-251 and learned that there is no oracle for the halting set, meaning it’s impossible
to write a program that will determine if an other arbitrary program will halt for a given input. A 213 TA,
Punter Hitelka, is determined to disprove this using a program called autolab that makes students do such
determinations for credit. Congrats, you are the guinea pig!

For this problem, you must determine if the following code halts or not, then tell us why. By halt, we mean
that the parent process eventually exits. You do not need to tell us if any child processes are maintained as
zombies.

Write your answer in the blank space below each of the three code blocks.

When grading this problem, we will only read the first 30 words of each response, so keep your answers
clear and concise!

1. Does this program terminate? Justify.

void main()
{

int *x = malloc(sizeof(int));
int cpid = fork();

*x = 1;

if(cpid == 0) {

*x = 0;
}

while(*x)
continue;

return 0;
}

Page 9 of 34

2. Does this program terminate? Justify.

void handler(int signum)
{

exit(1);
}

void main()
{

int cpid;
sigset_t s;

sigaddset(&s, SIGUSR1);

sigprocmask(SIG_BLOCK, &s, NULL);

signal(SIGUSR1, handler);

if((cpid = fork()) == 0)
{

printf("I’m a child");
while(1)

continue;
}

sigprocmask(SIG_UNBLOCK, &s, NULL);

printf("I’m on a boat!");
kill(cpid, SIGUSR1);
waitpid(cpid, NULL, 0);

}

Page 10 of 34

3. Does this program terminate? Justify.

void sig_kill_handler(int signum)
{

printf("I’m not gonnaaa stooppppp\n");
while(1)

continue;
}

void main()
{

int cpid;

signal(SIGKILL, sig_kill_handler);

if((cpid = fork()) == 0)
{

printf("Looping Forever\n");
while(1) continue;

}
else
{

kill(cpid, SIGKILL);
waitpid(cpid, NULL, 0);

}
}

Page 11 of 34

Problem 5. (15 points):
Following is a series of three C snippets with associated disassemblies. Each snippet contains one or zero
errors. If there is an error, circle it and provide a brief explanation of why it is wrong in the space below the
code. If there is no error, state that there is no error. Note that the error (if one exists) is in the C→ assembly
translation, not in the logic or behavior of the C code.

Please write your answers only on this page.

int squareNumber(int x) {
return (x * x);

}

08048344 <squareNumber>:
8048344: 55 push %ebp
8048345: 89 e5 mov %esp,%ebp
8048347: 8b 45 04 mov 0x4(%ebp),%eax
804834a: 0f af c0 imul %eax,%eax
804834d: 5d pop %ebp
804834e: c3 ret

int fourth(char *str) {
return str[3];

}

0804834f <fourth>:
804834f: 55 push %ebp
8048350: 89 e5 mov %esp,%ebp
8048352: 8b 45 08 mov 0x8(%ebp),%eax
8048355: 83 c0 03 add $0x3,%eax
8048358: 0f be 00 movsbl (%eax),%eax
804835b: 5d pop %ebp
804835c: c9 leave
804835d: c3 ret

int unrandomNumber() {
return 4;

}

0804835e <unrandomNumber>:
804835e: 55 push %ebp
804835f: 89 e5 mov %esp,%ebp
8048361: a1 04 00 00 00 mov 0x4,%eax
8048366: 5d pop %ebp
8048367: c3 ret

Page 12 of 34

Problem 6. (10 points):
Crummy Networks

Error Handling
Below is some code for a concurrent echo server. We have left out the error handling code for the three
functions socket, send, and recv. These blanks are marked with

/**** WRITE CODE BELOW *******/

<and you have to fill in here>

/***** WRITE CODE ABOVE *****/

Please fill in those blanks with appropiate error handling code. Do not print out any messages, just modify
the control flow.

Page 13 of 34

#include <stdio.h>
#include <pthread.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>

#define BUFF_SIZE 512
#define SERVER_PORT 15213

char buffer[BUFF_SIZE];

void * handleConnection(void *);

int main(){
int server_sock;
struct sockaddr_in serverAddr, clientAddr;
pthread_t tid;

/*ignore the SIGPIPE signal*/
signal(SIGPIPE,SIG_IGN);

/*open server_socket */
if((server_sock = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP))<0){

/**** WRITE CODE BELOW *******/

/***** WRITE CODE ABOVE *****/
}

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(SERVER_PORT);
serverAddr.sin_family = AF_INET;
if(bind(server_sock,(struct sockaddr *)&serverAddr,

sizeof(struct sockaddr)<0)){
/*handle bind failing*/
exit(-1);

}

Page 14 of 34

if(listen(server_sock,15)<0){
/*handle listen failing*/
exit(-1);

}
while(1){

int client_socket;
size_t clientLen = sizeof(struct sockaddr);

if((client_socket = accept(server_sock,(struct sockaddr *)&clientAddr,
&clientLen))<0){
/*handle failing of accept*/
continue;

}
pthread_create(&tid,NULL,handleConnection,(void *) client_socket);

}
}

/*handle data on this socket*/
void * handleConnection(void * sock){

int socket = (int) sock;
int recvSize;

pthread_detach(pthread_self());

do{
if((recvSize = recv(socket,buffer,BUFF_SIZE,0))<0){

/***** WRITE CODE BELOW*******/

/***** WRITE CODE ABOVE ******/
}

if(send(socket,buffer,recvSize,0)<0){
/***** WRITE CODE BELOW *******/

/****** WRITE CODE ABOVE *****/
}

}while(recvSize >0);
/*once the code reaches this point, we have received 0 bytes from the recv

* call*/
close(socket);
pthread_exit(NULL);

}

Page 15 of 34

Network Bugs
Assuming all system calls succeed (and therefore the error handling code you wrote in part A is never
executed), please locate the 2 logic bugs in this code and describe them. (A logic bug is one where the pro-
grammer misunderstood the way in which their program will execute and will produce unwanted behavior
under certain input conditions).

Bug 1

Bug 2

Page 16 of 34

Problem 7. (15 points):
You’ve been asked to design the floating-point unit for Harry Q. Bovik’s new microprocessor. Harry is sure
that he wants to use the IEEE standard for floating-point numbers, but he isn’t sure of some of the other
design parameters. He has some questions for you:

If floats are represented with 12 bits, with 1 bit for the sign, 6 for the exponent, and 5 for the fraction:

1. What is the largest non-infinite number representable?

2. What is the smallest positive number representable?

3. What does the number 255 round to using this format?

Harry is concerned about precision in his system. He’d like to be able to represent positive integers up to
255 without having to round.

What is the least number of fraction bits and the least number of exponent bits to make this possible? (Note
that the total number of bits may change)

4. Number of Fraction Bits:

5. Number of Exponent Bits:

Page 17 of 34

Harry decided to extend his floating point format by one bit.

First he wonders about the effect on the range (defined as the difference between the smallest and largest
representable finite number). Which of the following is true?

6. The range will be increased

(a) By adding the bit to the fraction bits

(b) By adding the bit to the exponent bits

(c) By both

(d) By neither

Next he worries about the rounding error. Which of the following is true?

7. The rounding error for all numbers remains unchanged or is reduced

(a) By adding the bit to the fraction bits

(b) By adding the bit to the exponent bits

(c) By both

(d) By neither

Page 18 of 34

Problem 8. (10 points):
The Curse of Abalienation!!

For this question, we will be looking at the 32-bit libc implementation of malloc.

• The libc implementation uses an 8 byte alignment of the payload areas.

• The libc implementation uses the following layout for free blocks:

header prev next payload footer
(4 bytes) (4 bytes) (4 bytes) (arbitrary size) (4 bytes)

Where prev, next and footer are stored inside the space for the payload.

• The libc implementation uses the following layout for allocated blocks:

header payload
(4 bytes) (arbitrary size)

Your friend, Harry Q. Bovik, is taking 15-123, where one of the assignments is to write a linked list imple-
mentation of a dictionary. Harry is experiencing a strange bug where his dictionary works on everything
except for 12 letter words, on which it generates a Segmentation Fault. After some debugging you find that
it also doesn’t work on words of size 20 and 28 (you don’t test any further).

Here is Harry’s addWordDict method:

int addWordDict(dictionary * dict, char * word){
int result;
char * wordCopy;
if (dict == NULL){

return ERR_NULL_DICT;
}
if(word == NULL){

return WARN_INVALID_ARGUMENT;
}
/*add the word */
/*We’re going to make a copy of the word because the word buffer

gets reused. This wordCopy will get free’d when we remove
the word from the dictionary. */

wordCopy = (char *)malloc((strlen(word)) * sizeof(char));
strcpy(wordCopy,word);
result = addItemLL(((dict)->wordList),(void *) wordCopy);
dict->count = ((dict)->wordList)->count; /*update the count */
return result;

}

Page 19 of 34

1. What is wrong with Harry’s addWordDict method?

2. Why does this code work on words of sizes other than 12, 20, 28... but not on these sizes? (Be as
detailed as possible)

Page 20 of 34

Problem 9. (10 points):
Harry Q. Bovik is working on some code and needs your help. He is writing a malloc package with the
intent that it should compile and run correctly on both x86 and x86-64 machines, but to keep things simple
he’s never allowing the heap to grow larger than 4GB, so he can use 4 byte headers. He’s using the block
layout shown below, which should look familiar to you.

+--+
| header (4 bytes) | payload (varies) | footer (4 bytes) |
+--+

When Harry gets to his free implementation, he decides to write a macro to abstract the pointer arithmetic
details out of his code. The first thing he needs to do is determine a block’s size given a pointer to the
payload of that block, to be used like so:

void free(void *p) {
int size = HEADER(p) & ˜0x7;
...

}

Fill in the blanks in the table below, indicating with “Yes” or “No” whether each macro will perform cor-
rectly on either x86 or x86-64.

x86 x86-64

#define HEADER(p) (*(long *)((char **)(p) - 1)) __________ __________

#define HEADER(p) (*(char *)((char *)(p) - 4)) __________ __________

#define HEADER(p) (*(int *)((char *)(p) - 2)) __________ __________

#define HEADER(p) (*(long *)((char *)(p) - 2)) __________ __________

#define HEADER(p) (*(char *)((long *)(p) - 2)) __________ __________

#define HEADER(p) (*(int *)((long *)(p) - 1)) __________ __________

#define HEADER(p) (*(char *)((int *)(p) - 1)) __________ __________

#define HEADER(p) (*(long *)((long *)(p) - 2)) __________ __________

#define HEADER(p) (*(int *)((int *)(p) - 1)) __________ __________

Page 21 of 34

Problem 10. (20 points):
Consider the following C program running on a 32-bit machine.

int fact (int n) {
if (n == 1)

return 1;

return n * fact(n - 1);
}

int main (void) {
int a = fact(2);
return 0;

}

The assembly dump of the two functions is printed below.

8048344 <fact>:
8048344: 55 push %ebp
8048345: 89 e5 mov %esp,%ebp
8048347: 53 push %ebx
8048348: 83 ec 04 sub $0x4,%esp
804834b: 8b 5d 08 mov 0x8(%ebp),%ebx
804834e: b8 01 00 00 00 mov $0x1,%eax
8048353: 83 fb 01 cmp $0x1,%ebx
8048356: 74 0e je 8048366 <fact+0x22>
8048358: 8d 43 ff lea 0xffffffff(%ebx),%eax
804835b: 89 04 24 mov %eax,(%esp)
804835e: e8 e1 ff ff ff call 8048344 <fact>
8048363: 0f af c3 imul %ebx,%eax
8048366: 83 c4 04 add $0x4,%esp
8048369: 5b pop %ebx
804836a: 5d pop %ebp
804836b: c3 ret

804836c <main>:
804836c: 55 push %ebp
804836d: 89 e5 mov %esp,%ebp
804836f: 83 ec 08 sub $0x8,%esp
8048372: c7 04 24 02 00 00 00 movl $0x2,(%esp)
8048379: e8 c0 ff ff ff call 8048344 <fact>
804837e: b8 00 00 00 00 mov $0x0,%eax
8048383: c9 leave
8048384: c3 ret
8048385: 90 nop

Page 22 of 34

Right before the execution of the call to fact(2) at line 0x8048379, the value of %esp is 0xbfc5e4f0,
and the value of %ebx is 0xdeadbeef.

Please answer the following questions.

1. What is the value of %ebp before the call to fact(2)?

2. How many bytes does each stack frame of fact() use?

3. How many bytes of the stack are written to in total before fact(2) returns?

4. Fill in the values contained on the stack when the call returns. If the value at a particular memory
address is not written to during the course of execution of the program, write a dash (−) in it. Give all
values in hex.

Stack Address Value

0xbfc5e4f0 0x00000002

0xbfc5e4ec

0xbfc5e4e8

0xbfc5e4e4

0xbfc5e4e0

0xbfc5e4dc

0xbfc5e4d8

0xbfc5e4d4

0xbfc5e4d0

0xbfc5e4cc

0xbfc5e4c8

0xbfc5e4c4

0xbfc5e4c0

Page 23 of 34

Problem 11. (30 points):
Stack Smashing

You have recently taken an internship on the IT staff of a start-up founded by recent CMU graduates. In
order to take advantage of his systems programming skills, the company chose CS superstar Harry Q. Bovik
to head up the IT department.

Harry decided to run all of the network services off of a single Linux server priced at $3,235,430.00. How-
ever, since he was not an ECE student, Harry never learned much about computer security. Instead, he
spent most of his time analyzing the arcane properties of splay trees and skip lists. Not surprisingly, Harry
completely botched the security on his multi-million dollar server.

You have been assigned to manage one of the several services running on the server. You can not run the
service executable directly. Instead, you must run a small C program that Harry wrote which asks you for a
password and, upon inputting the correct password, runs the service executable with root privileges (using
the setuid/setgid mechanism).

One of the first things you notice about Harry’s program is that if you type in a password that is too long
the program causes a segmentation fault. Using your knowledge from 213, you suspect Harry’s program
is vulnerable to a buffer overflow attack via the password input code. Being a good 213 student, you
immediately attempt to exploit this vulnerability for fun and profit!

Unfortunately, you do not have access to the source code, but you can copy the 32-bit executable to your
local machine and examine it using GDB. An assembly dump of the code is included on the following pages.

Page 24 of 34

Dump of assembler code for function main:
0x080484b4 <main+0>: push %ebp
0x080484b5 <main+1>: mov %esp,%ebp
0x080484b7 <main+3>: sub $0x18,%esp
0x080484ba <main+6>: and $0xfffffff0,%esp
0x080484bd <main+9>: mov $0x0,%eax
0x080484c2 <main+14>: add $0xf,%eax
0x080484c5 <main+17>: add $0xf,%eax
0x080484c8 <main+20>: shr $0x4,%eax
0x080484cb <main+23>: shl $0x4,%eax
0x080484ce <main+26>: sub %eax,%esp
0x080484d0 <main+28>: call 0x804851e <ckpass>
0x080484d5 <main+33>: mov %eax,0xfffffffc(%ebp)
0x080484d8 <main+36>: cmpl $0x0,0xfffffffc(%ebp)
0x080484dc <main+40>: je 0x80484f6 <main+66>
0x080484de <main+42>: movl $0x80486f8,(%esp)
0x080484e5 <main+49>: call 0x80483bc <_init+104>
0x080484ea <main+54>: movl $0x1,(%esp)
0x080484f1 <main+61>: call 0x80483cc <_init+120>
0x080484f6 <main+66>: movl $0x8048707,0xfffffff8(%ebp)
0x080484fd <main+73>: movl $0x0,0x8(%esp)
0x08048505 <main+81>: mov 0xfffffff8(%ebp),%eax
0x08048508 <main+84>: mov %eax,0x4(%esp)
0x0804850c <main+88>: mov 0xfffffff8(%ebp),%eax
0x0804850f <main+91>: mov %eax,(%esp)
0x08048512 <main+94>: call 0x804837c <_init+40>
0x08048517 <main+99>: mov $0x0,%eax
0x0804851c <main+104>: leave
0x0804851d <main+105>: ret
End of assembler dump.

Dump of assembler code for function ckpass:
0x0804851e <ckpass+0>: push %ebp
0x0804851f <ckpass+1>: mov %esp,%ebp
0x08048521 <ckpass+3>: sub $0x38,%esp
0x08048524 <ckpass+6>: movl $0x10,0x8(%esp)
0x0804852c <ckpass+14>: movl $0x0,0x4(%esp)
0x08048534 <ckpass+22>: lea 0xffffffe8(%ebp),%eax
0x08048537 <ckpass+25>: mov %eax,(%esp)
0x0804853a <ckpass+28>: call 0x80483dc <_init+136>
0x0804853f <ckpass+33>: lea 0xffffffe8(%ebp),%eax
0x08048542 <ckpass+36>: mov %eax,(%esp)
0x08048545 <ckpass+39>: call 0x804839c <_init+72>
0x0804854a <ckpass+44>: lea 0xffffffe8(%ebp),%eax
0x0804854d <ckpass+47>: mov %eax,0x4(%esp)
0x08048551 <ckpass+51>: lea 0xffffffd8(%ebp),%eax
0x08048554 <ckpass+54>: mov %eax,(%esp)
0x08048557 <ckpass+57>: call 0x8048571 <hashpass>
0x0804855c <ckpass+62>: lea 0xffffffd8(%ebp),%eax
0x0804855f <ckpass+65>: movl $0x80486e8,0x4(%esp)
0x08048567 <ckpass+73>: mov %eax,(%esp)
0x0804856a <ckpass+76>: call 0x804838c <_init+56>
0x0804856f <ckpass+81>: leave
0x08048570 <ckpass+82>: ret
End of assembler dump.

Page 25 of 34

1. execl, where are you?

The execl function is a C library function which executes the specified program with the specified
arguments. It has the following prototype:

int execl(const char* program, char* arg0, ...);

The argument program is a pointer to a string containing the full path name of the program’s exe-
cutable file. The arg0 argument begins a variable argument list which is passed to the program. By
convention, arg0 is always set equal to program. The argument list is terminated by a null pointer.

Harry has used this function to transfer control from his C program to the actual server executable if
the password is correct.

From your experience running the program, you deduce that the main function has a structure similar
to the following:

int main(int argc, char* argv[])
{

int result;

result = ckpass();
if (result != 0)
{

printf("Bad password!\n");
exit(EXIT_FAILURE);

}

char* server = "/usr/bin/server";
execl(server, server, NULL);

return 0;
}

However, GDB was unable to determine which of the calls in main are actually to execl.

Question: Using the above assembler dump of the main function, what is the address of the first
instruction of execl?

Page 26 of 34

2. Draw the stack.

Make a drawing of the stack frame of ckpass and the argument-build and return address areas of the
stack frame of main when it calls ckpass. You do not need to specify the memory addresses used
by the stack, just give names to each value pushed onto the stack (e.g. return address, argument (n),
saved %ebp, array of (n) bytes, etc.).

Page 27 of 34

3. Dis-dis-assembling...

In order to get a better understanding of where the buffer overflow occurs, you attempt to reconstruct
the C source of the ckpass function.

For your reference, the three unknown function prototypes are listed below:

0x80483dc <_init+136> -> memset(void* address, int val, int n);

Sets n bytes starting at the given address to val (shortened to 8 bits).

0x804838c <_init+72> -> gets(char* buf);

Reads in one line of any length from standard input, copying the string into buf.

0x804837c <_init+56> -> strcmp(const char* s1, const char* s2);

Compares the strings s1 and s2 for equality. Returns zero if the strings are equal, nonzero otherwise.

Also, 0x80486cc is the address of a string representing the correct password hash. It is declared as
a global variable:

const char* good_hash = "...";

Task: Fill in the ckpass function below:

int ckpass()
{

char a[____];

char b[____];

memset(_________, _____, _____);

gets(________);

hashpass(b, a);

return strcmp(________, good_hash);
}

Page 28 of 34

4. Where’s the exploit?

Now that you have reconstructed the source to ckpass, BRIEFLY explain why this code has a buffer
overflow vulnerability.

Page 29 of 34

5. ...?

Now that you have identified a stack buffer overflow vulnerability and have a clear picture of the
stack, you need to figure how to exploit it for fun and profit (mostly profit...)! Since the system
contains all of the data for the company, you are itching to modify payroll data in your favor. In order
to do a complex task such as this, you have written a program to make the necessary modifications
(/home/213student/hax). You just need to execute the program using root privileges.

Fortunately, execl, the function Harry used to execute the server, will also execute your program −
and you even know its address! Basically, given the documentation of execl, you need to execute
an equivalent of the following code:

char* hax = "/home/213student/hax";
execl(hax, hax, NULL);

Unfortunately, you are unable to insert executable code into your exploit string due to restrictions
imposed by the kernel. You will have to use some other mechanism.

Explain how you can call execl correctly by inputting a carefully designed password string. Be sure
to describe how to build the arguments for execl! No more than 4 sentences should be necessary.

HINT: execl does not return!

Page 30 of 34

6. Profit!

Show an implementation of your exploit by drawing a picture of the stack after your exploit code has
been read in by gets. Also indicate where the stack pointer %esp is pointing right before ckpass
returns. Only draw the portion of the stack overwritten by your exploit code.

For reference, the return address pushed onto the stack when main calls ckpass is located at STACK
address 0xffffce2c. You may assume that this will not change between multiple executions of
Harry’s program.

Page 31 of 34

Problem 12. (20 points):
Multithreading
For the entirety of this question, assume that the compiler performs no optimization and that all code runs
on the processor exactly as written. Also assume that no library calls will fail.
Suppose we have a program as follows:

#include <stdio.h>
#include <pthread.h>

int i = 0;

void *do_stuff(void *arg __attribute__((unused))) {
i++;
return NULL;

}

int main() {
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, do_stuff, NULL);
pthread_create(&tid2, NULL, do_stuff, NULL);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
printf("%d\n", i);
return 0;

}

Recall that because i is a global variable, i++; will compile to something like this:

400728: 8b 04 25 40 10 60 00 mov 0x601040,%eax
40072f: 83 c0 01 add $0x1,%eax
400732: 89 04 25 40 10 60 00 mov %eax,0x601040

1. What are all possible outputs of this program? For each output, explain how the kernel could interleave
execution of the two child threads to produce it.

Page 32 of 34

Suppose we alter do stuff to look as follows:

void *do_stuff(void *arg __attribute__((unused))) {
int a;
for (a = 0; a < 1000; a++)

i++;
return NULL;

}

Because the code is not optimized, there will be one load-increment-store sequence per iteration of the loop.

2. For each number, tell whether or not our program could output it, and briefly explain why or why not.

• 2000

• 1500

• 2

• 1

Page 33 of 34

Your programming partner Harry Q. Bovik notices that your code has some race conditions, and draws up
the following locking mechanism:

int locked = 0;
void lock() {

while (locked == 1) {
continue;

}
locked = 1;

}
void unlock() {

locked = 0;
}

Because the load-increment-store sequence is the critical section of your program, you place a call to
lock() immediately before the i++ line, and a call to unlock() immediately after. However, run-
ning your supposedly-now-threadsafe program again, you discover that the output is still nondeterministic.
Turns out your partner’s clever locking scheme doesn’t do a very good job protecting the critical section
after all.

3. Give an execution sequence of two threads in the lock() function that would end up with both
threads holding the lock at the same time.

Page 34 of 34

