
Andrew login ID:
Full Name:

Recitation Section:

CS 15-213, Fall 2008
Final Exam

Friday. December 12, 2008

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name, Andrew login ID, and
recitation section (A–H) on the front.

• The exam has a maximum score of 106 points.

• This exam is OPEN BOOK. You may use any books or notes you like. No calculators or other
electronic devices are allowed.

1 (18):

2 (12):

3 (10):

4 (8):

5 (6):

6 (7):

7 (8):

8 (12):

9 (8):

10 (8):

11 (9):

TOTAL (106):

Page 1 of 22

Problem 1. (18 points):
For the following questions, indicate whether each of the statements following them is true or false.

1. The register rax currently has value 0. Which of the following statements are true?

T/F: Executing movq (%rax), %rcx will cause a segmentation fault.

T/F: Executing leaq (%rax), %rcx will cause a segmentation fault.

T/F: Executing movq %rax, %rcx will cause a segmentation fault.

T/F: Executing addq 8, %rsp will increase the stack allocation by 8 bytes.

2. When you run two programs on the same Linux machine, why do you not have to worry about them
using the same physical memory?

T/F: The programmers knew to avoid using the same addresses and were careful not to do so.

T/F: The virtual addresses used by the running programs are translated to non-overlapping phys-
ical addresses.

T/F: Only one program really runs at a time, and the physical memory is saved/restored as part
of each context switch.

3. Consider the following global variable declaration:

char str[80];

Which of the following outcomes should be of significant concern if you write a program that calls
gets(str)?

T/F: There could be a stack overflow leading to execution of malicious code.

T/F: There could be a buffer overflow that modifies other global variables.

T/F: There could be a SEGFAULT.

T/F: You might get a bad score if you did this for your 15-213 lab.

Page 2 of 22

4. Consider the following structure definition:

struct data {
short things[3];
unsigned int doodad;
char stuff[8];

}

Which of the following holds for an x86-64 machine:

T/F: The size of struct data is 18.

T/F: The size of struct data is 20.

T/F: The size of struct data is 24.

T/F: Network code should use htons() for each entry in things that is sent to another
computer.

T/F: Network code should use htons() for data in stuff that is sent to another computer.

5. After a process calls fork(), which of the following are shared by it and the new child process? (By
“shared,” we mean that an update by one process could affect the behavior of the other.)

T/F: All file table entries corresponding to files open in the parent before the call to fork().

T/F: New file table entries corresponding to files open()’d by the parent after the fork().

T/F: New file table entries corresponding to files open()’d by the child after the fork().

T/F: All of virtual memory.

T/F: The stack.

T/F: All register contents.

T/F: All sockets with connections established before the fork().

Page 3 of 22

6. Suppose we compile and run the following code on a processor where integer multiply has a 10 clock
cycle latency and a 2 clock cycle issue time. That is, although a single product computation requires
10 clock cycles, the multiplier can start a new computation every 2 clock cycles.

int prod = 1;
for (i = 0; i < n; i+= 2) {
prod = prod *
a[i] * a[i+1]; // Line P

}

Which of the following statements hold for this code:

T/F: It will properly compute the product for any array a of length n.

T/F: It will have a CPE of 10.

T/F: It will have a CPE of 2.

T/F: Changing Line P to be (a[i] * a[i+1]) will change the CPE.

T/F: Changing Line P to be (a[i] * a[i+1]) could change the computed result.

Page 4 of 22

Problem 2. (12 points):
We are running programs on a machine where values of type int have a 32-bit two’s-complement represen-
tation, and values of type long have a 64-bit two’s complement representation. Right shifts are performed
arithmetically. Values of type double use the 64-bit IEEE format.

We generate arbitrary integer values x and y, and convert them to values of type long and double as
follows:

/* Create some arbitrary values */
int x = random();
int y = random();
/* Convert to long */
long lx = (long) x;
long ly = (long) y;
/* Convert to double */
double dx = (double) x;
double dy = (double) y;

For each of the following C expressions, you are to indicate whether or not the expression always yields 1.
If it can yield 0, give values for the arguments that make the expression evaluate to 0.

Hint: Note that some properties may hold for dx and dy that do not hold for arbitrary double-precision
floating-point numbers, and similarly lx and ly are not arbitrary long’s.

Expression Always 1? Arguments (if could yield 0)

x+3*(x+x)+x == x<<3

˜x+2 == 1-x

x>>1 == x/2

x * y == lx * ly

lx + y == x + ly

lx == 0 || (lx*ly/lx == ly)

(x < y) == (dx < dy)

dx - dy == (double) (x-y)

Page 5 of 22

Problem 3. (10 points):
Consider the following x86 64 assembly code:

On entry, %edi = val, %rsi = K
func:

pushq %r12
movl %edi, %r12d
pushq %rbp
xorl %ebp, %ebp
pushq %rbx
movq %rsi, %rbx
jmp .L7

.L4:
addl $1, %ebp
addq $4, %rbx
cmpl $15213, %ebp
je .L11

.L7:
movl (%rbx), %eax
testl %eax, %eax
js .L4
movl $4, %edi
call malloc
testq %rax, %rax
movq %rax, %rdx
je .L5
testl %r12d, %r12d
je .L6
movl (%rbx), %ebp

.L6:
movl %ebp, (%rax)

.L5:
popq %rbx
popq %rbp
movq %rdx, %rax
popq %r12
ret

.L11:
popq %rbx
xorl %edx, %edx
popq %rbp
movq %rdx, %rax
popq %r12
ret

Page 6 of 22

Fill in the blanks of the corresponding C function:

________ *func(int val, ________ K) {

int i;

_______ j;

for (i = 0; i < 15213; i++)

if (__________________) {

j = ________________________ ;

if (__________________)

*j = _____________________ ;

return j;
}

return NULL;
}

Page 7 of 22

Problem 4. (8 points):
The problem requires understanding how C code accessing structures, unions, and arrays is compiled. As-
sume the x86-64 conventions for data sizes and alignments.

#include "def.h"

typedef struct {
short x[A][3]; /* Unknown constant A */
double y;
float f;
double d;

} str;

typedef union{
double t ;
str S;
int array[A*3];

} uni;

void setVal(str *p, uni *u) {
double val = p -> y;
u -> t = val;

}

You do not have a copy of the file def.h, in which constants A and B are defined, but you have the following
x86-64 assembly code for the function setVal:

setVal:
rdi = p, rsi = u
movq 64(%rdi),%rax
movq %rax, (%rsi)
ret

Based on this code, determine the values of the constant A and the size of the struct and union:

A = ________________

Size of str = ________________ bytes

Size of uni = _______________ bytes

Page 8 of 22

Problem 5. (6 points):
Consider a system with 20 GB of physical memory (with a 8 KB page size) and a 40 GB disk drive with the
following characteristics:

• 512-byte sectors

• 800 sectors/track

• 7,200 RPM (i.e., 8ms to complete one full revolution)

• 6ms average seek time

Imagine an application that MALLOC()s nearly 40 GB of space, initializes it to all zeros, and then randomly
selects integers from across the full space and increments them. (Assume that there are no other processes.)

A. What percentage of the integers selected would result in page faults?

B. What is the average time to service a page fault? (round to the nearest millisecond)

C. Approximately how many integers can be incremented per second? (again, rounding is fine)

D. How much additional memory would be needed to double the number of integers that could be incre-
mented incremented per second? (again, rounding is fine)

Page 9 of 22

Problem 6. (7 points):
Consider the following code:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "csapp.h"

int main(int argc, char **argv) {
char c;
int file1 = Open_clientfd("http://www.foobarzzz.com/", 80);
int file2 = Open_clientfd("http://www.foobarzzz.com/", 80);
int file3;

rio_readn(file1, &c, 1);
rio_readn(file1, &c, 1);
rio_readn(file1, &c, 1);

rio_readn(file2, &c, 1);

file3 = dup(file1);
rio_readn(file3, &c, 1);
printf("1 = %c\n", c);

int pid = fork();
if(pid == 0) {

Close(file3);

file3 = dup(file2);
rio_readn(file3, &c, 1);
printf("2 = %c\n", c);

rio_readn(file2, &c, 1);
printf("3 = %c\n", c);

}

Page 10 of 22

else {
waitpid(pid, NULL, 0);

printf("4 = %c\n", c);

rio_readn(file3, &c, 1);
printf("5 = %c\n", c);

rio_readn(file1, &c, 1);
printf("6 = %c\n", c);

Close(file1);
Close(file2);
dup2(file3, file2);

rio_readn(file2, &c, 1);
printf("7 = %c\n", c);

}

return 0;
}

Assume that http://www.foobarzzz.com/ when accessed on port 80 serves the string of bytes MACHINES .
Also assume that all system calls succeed. What will be the output when this code is compiled and run?
You may not need all the lines in the table given below.

Output Line Number Output

1st line of output

2nd line of output

3rd line of output

4th line of output

5th line of output

6th line of output

7th line of output

Page 11 of 22

Problem 7. (8 points):

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /* Stores two different elements in an array */
5 int* build_array(int a, int b)
6 {
7 int *ptr = malloc(2);
8
9 /* check that both numbers are different */
10 if (a != b) {
11 *ptr = a;
12 *(ptr+4) = b;
13 return ptr;
14 } else {
15 return NULL;
16 }
17 }
18
19 int main (int argc, char **argv)
20 {
21 int num1,num2;
22 int *ptr = NULL;
23
24 /*
25 * Two numbers are assigned randomly generated integers by the
26 * function "generate_random_integer()".
27 * Assume that function "generate_random_integer()" is
28 * bug-free and behaves as the name suggests.
29 */
30 num1 = generate_random_integer();
31 num2 = generate_random_integer();
32
33 ptr = build_array(num1, num2);
34
35 printf("num1=%d,num2=%d\n", ptr[0], ptr[1]);
36
37 return 0;
38 }
39
40

The 40-line program shown above has two goals: (1) store two distinct integers in an array (if the integers are same,
the program does not store them in the array), and (2) print the contents of the array.

We ran the program on the Fish machines, and it compiles fine. Assume that generate random integer works
correctly; it generates and returns a random integer.

Page 12 of 22

The numbers on the left indicate line numbers.

The instructors think that program has four significant problems that need to be fixed. What are the problems? Where
do they occur (give line numbers and function names)? And, How do we fix them?

Line Number(s) and Function Name:
Problem:

Fix:

Line Number(s) and Function Name:
Problem:

Fix:

Line Number(s) and Function Name:
Problem:

Fix:

Line Number(s) and Function Name:
Problem:

Fix:

Page 13 of 22

Problem 8. (12 points):
The code samples below are designed to test your understanding of multithreading, semaphores, and the
effects of multiple threads modifying the same data. You will be asked to determine the possible outputs
the given code can have. For the purposes of this problem, assume that for printf, argument passing and
execution of the function is one atomic operation.

sem_t sem;

int main()
{

int j;
pthread_t tids[3];
sem_init(&sem, 0, 1);
for (j=0; j<3; j++) {

pthread_create(&tids[j], NULL, doit, NULL);
}
for (j=0; j<3; j++) {

pthread_join(&tids[j], NULL);
}
return 0;

}

This is the main function for all three problems below. The only differences in the problems are the details
of the thread function, doit, listed on the next page.

Page 14 of 22

part A:

int i = 0;

void *doit(void *arg)
{

P(&sem);
i = i + 1;
printf("%d\n", i);
V(&sem);

}

List all possible outputs, using one column of boxes below for each possible output.

part B:

int i = 0;

void *doit(void *arg)
{

P(&sem);
i = i + 1;
V(&sem);
printf("%d\n", i);

}

List all possible outputs, using one column of boxes below for each possible output.

Page 15 of 22

part C:

int i = 0;

void *doit(void *arg)
{

i = i + 1;
printf("%d\n", i);

}

Consider each of the following outputs in the table below. If an output could possibly be produced by the
above code, after all threads are terminated, then fill in the empty box beside it with ”Y” (otherwise ”N”).

Output: 2 3 1 1
1 1 2 3
1 1 1 1

Possible? (Y/N)

Page 16 of 22

Problem 9. (8 points):

Part A:

Consider the following client code to connect to a server that runs at 128.2.222.158 on port 15213, sends a
message, and receives a response. The response from the server may be longer than MAXBUF and the server
will send an EOF when it is done sending the response.

int fd, num;
char buf[MAXBUF];
struct sockaddr_in server_address;
char *msg = argv[1];

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
exit(1);

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = 0x8002de9e;
server_address.sin_port = htons((unsigned short)15213);

if(connect(fd, (struct sockaddr *)&server_address,
sizeof(server_address)) < 0)

exit(1);

if((num = rio_writen(fd, msg, strlen(msg) + 1)) < 0) exit(1);
if((num = read(fd, buf, MAXBUF)) < 0) exit(1);
printf("%s\n", buf);

For each of the statements below, indicate whether it is true or false:

Statement T/F

The server address 0x8002de9e should have an ntohl call around it.

The server address structure should be zeroed out with bzero before use.

Short counts are not an issue here because the read call cannot return a short
count.

The server address 0x8002de9e should have an htonl call around it.

The read call should be in a loop to ensure everything from the server is read.

Page 17 of 22

Part B:

Consider the following server code that creates a socket and listens for client connections.

int listenfd;
struct sockaddr_in server_address;

if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
exit(1);

bzero((char *)&server_address, sizeof(server_address));
server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons((unsigned short)15213);

if(listen(listenfd, 5) < 0) exit(0);
if(bind(listenfd, (struct sockaddr*)&server_address,

sizeof(server_address)) < 0)
exit(1);

while (1) { /* process client connections */ }

For each of the statements below, indicate whether it is true or false:

Statement T/F

listenfdwill accept connections for all requests to port 15213 on any IP address
for this host

The calls to htonl and htons should be replaced by ntohl and ntohs

The calls to listen and bind should be flipped (bind should be before
listen)

We have to specify an address (instead of using INADDR ANY) for
server address.sin addr.s addr in order for the server to accept con-
nections properly.

Page 18 of 22

Problem 10. (8 points):
Consider the following C function. Assume that X and Y are 32 and 32, respectively, making the total
number of accesses 2 ∗X ∗ Y = 2048.

int A[X][Y], B[Y][X];

void matrix_transpose()
{

int i, j;

for(i = 0; i < X; i++)
for(j = 0; j < Y, j++)

B[j][i] = A[i][j];

return;
}

Assume the following:

• sizeof(int) = 4.

• The cache is cold when the function is called and the arrays have been initialized elsewhere.

• Variables i and j and pointers to A and B are stored in registers.

• A and B are aligned such that A[0][0] begins a cache block, and B[0][0] comes immediately
following A[X − 1][Y − 1].

Case 1: Assume that the cache is a 4KB direct-mapped cache with 8-byte cache lines. Calculate the cache
miss rate by giving the number of cache misses. For partial credit briefly explain where collisions occur
w.r.t. this access pattern (i.e. using the indices).

miss rate = ____________ / 2048 (3 pts)

Page 19 of 22

For your reference, X = 32, Y = 32, and here is the code again:

int A[X][Y], B[Y][X];

void matrix_transpose()
{

int i, j;

for(i = 0; i < X; i++)
for(j = 0; j < Y, j++)

B[j][i] = A[i][j];

return;
}

Assume the cache is the same size as in case 1, but is now 2-way set-associative with an LRU replacement
policy. Calculate the cache miss rate by giving the number of cache misses.

miss rate = ____________ / 2048 (3 pts)

Would a larger cache size, with the same cache line size, reduce the miss rate? (Y/N)

case 1: _____ case 2: _____

Would a larger cache line size, with the same cache size, reduce the miss rate? (Y/N)

case 1: _____ case 2: _____

Page 20 of 22

Problem 11. (9 points):

Consider the C code below:

void handler(int sig) {
printf("s\n");
exit(0);

}

main() {
int counter, pid;
int *pcounter2 = NULL;

signal(SIGUSR1, handler);

counter = 1;
pcounter2 = (int *)malloc(sizeof(int));

if (pid = fork()) {
counter--;
printf("%d\n", counter);

*pcounter2 = 0;
kill(pid, SIGUSR1);
waitpid(pid, NULL, 0);
printf("%d\n", counter);
fprintf(stderr, "%d\n", *pcounter2);

} else {
counter++;
printf("%d\n", counter);

*pcounter2 = 1;
}

}

Use the following assumptions to answer the questions:

• All processes run to completion and no system calls will fail.

• printf() and fprintf() are atomic and they flush stdout or the specified file descriptor after
printing arguments but before returning.

Page 21 of 22

A. Consider each of the following outputs to stdout in the table below. If an output could possibly
be produced by the above code, after all processes are terminated, then fill in the empty box beside it
with ”Yes” (otherwise ”No”).

Output to stdout Possible? (Yes/No)

020

002

0s0

0s20

2s00

20s0

B. Consider each of the following outputs to stderr in the table below. If an output could possibly
be produced by the above code, after all processes are terminated, then fill in the empty box beside it
with ”Yes” (otherwise ”No”).

Output to stderr Possible? (Yes/No)

0

1

C. In the normal case when all processes have terminated after running the above code on the fish ma-
chines, can the operating system successfully reclaim all of its memory? (Yes/No)

ALL MEMORY RECLAIMED? __________

Page 22 of 22

