
Andrew ID:

Full Name:

Recitation Section:

CS 15-213, Fall 2008
Exam 2

Thurs. Oct 30, 2008

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour full name, Andrew login ID, and
recitation section (A–H) on the front.

• Write your answers in the space provided for the problem. If you make a mess, clearly indicate your
final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like.No calculators or other
electronic devices are allowed.

• Good luck!

1 (6):

2 (9):

3 (6):

4 (8):

5 (10):

6 (6):

7 (7):

8 (8):

TOTAL (60):

Page 1 of 14

Problem 1. (6 points):
In buflab, you performed various buffer overflow attacks against a vulnerable functiongets that writes
into a small buffer. However, in practice, a decent compiler(such asgcc) warns about the vulnerabilities
of gets, and most programmers tend to take the advice.

Harry Q. Bovik thinks that his code is invulnerable against buffer overflow attacks as long as he stays away
from unsafe functions such asgets.

Here is a piece of code Bovik wrote; it compiled without warnings under a 32-bit little-endian machine:

// str.c (headers omitted)

int main()
{

char buf[23];
scanf("%s", buf);
return 0;

}

void remove_later()
{

printf("You have found my weakness!!!\n");
}

Your goal is to prove Bovik wrong by jumping to theremove later function. Do not worry about how
the program would behave upon exiting the function.

Page 2 of 14

Relevant assembly output fromobjdump of thestr program:

080483c0 <main>:
80483c0: 55 push %ebp
80483c1: 89 e5 mov %esp,%ebp
80483c3: 83 ec 38 sub $0x38,%esp
80483c6: 83 e4 f0 and $0xfffffff0,%esp
80483c9: 8d 45 d8 lea 0xffffffd8(%ebp),%eax
80483cc: 83 ec 10 sub $0x10,%esp
80483cf: 89 44 24 04 mov %eax,0x4(%esp)
80483d3: c7 04 24 e8 84 04 08 movl $0x80484e8,(%esp)
80483da: e8 f5 fe ff ff call 80482d4 <scanf@plt>
80483df: c9 leave
80483e0: 31 c0 xor %eax,%eax
80483e2: c3 ret

080483f0 <remove_later>:
80483f0: 55 push %ebp
80483f1: 89 e5 mov %esp,%ebp
80483f3: 83 ec 08 sub $0x8,%esp
80483f6: c7 04 24 eb 84 04 08 movl $0x80484eb,(%esp)
80483fd: e8 c2 fe ff ff call 80482c4 <puts@plt>
8048402: c9 leave
8048403: c3 ret

Assume that you are allowed to work under the same directory where Bovik createdstr, and you are
executing./hex2raw < exploit | ./str, whereexploit contains your attack code in hexadec-
imal.

Write down the contents of yourexploit, and use[n] to denoten consecutive arbitrary bytes:

Page 3 of 14

Problem 2. (9 points):
Consider the following C function to sum all the elements of a5× 5 matrix. Note that it is iterating over the
matrix column-wise, and iterating over the columnsin reverse order.

char sum_matrix(char matrix[5][5]) {
int row, col;
char sum = 0;
for (col = 4; col >= 0; col--) {
for (row = 0; row < 5; row++) {
sum += matrix[row][col];

}
}
return sum;

}

Suppose we run this code on a machine whose memory system has the following characteristics:

• Memory is byte-addressable.

• There are registers, an L1 cache, and main memory.

• A char is stored as a single byte.

• The cache is direct-mapped, with 4 sets and 2-byte blocks.

You should also assume:

• matrix begins at address 0.

• sum, row andcol are in registers; that is, the only memory accesses during the execution of this
function are tomatrix.

• The cache is initially cold and the array has been initialized elsewhere.

Fill in the table below. In each cell, write “h” if there is a cache hit when accessing the corresponding
element of the matrix, or “m” if there is a cache miss.

0 1 2 3 4
0
1
2
3
4

Page 4 of 14

Problem 3. (6 points):
Using pointers

Give the output for the following code snippet, assuming that it was compiled on an IA-32 machine. Variable
i, j, and k have memory addresses 600, 700 and 800, respectively.

#include <stdio.h>

int main() {
// Assume that i is stored at memory address 600
int i = 50;
// Assume that j is stored at memory address 700
int *j = &i;
// Assume that k is stored at memory address 800
int *k = (int *) i;

printf("%d,%d,%d", (int) i, (int) &i, (int) (i+1));
printf("\n");

printf("%d,%d,%d", (int) j, (int) &j, (int) (j+1));
printf("\n");

printf("%d,%d,%d", (int) k, (int) &k, (int) (k+1));
printf("\n");
return 0;

}

This program prints out three lines. Each line has three values that are separated by a comma. What is the
output?

Page 5 of 14

Problem 4. (8 points):
Consider the following C program, with line numbers:

1 int main() {
2 int counter = 0;
3 int pid;
4
5 while (counter < 4 && !(pid = fork())) {
6 counter += 2;
7 printf("%d", counter);
8 }
9
10 if (counter > 0) {
11 printf("%d", counter);
12 }
13
14 if (pid) {
15 waitpid(pid, NULL, 0);
16 counter += 3;
17 printf("%d", counter);
18 }
29 }

Use the following assumptions to answer the questions:

• All processes run to completion and no system calls will fail.

• printf() is atomic and callsfflush(stdout) after printing argument(s) but before returning.

• Logical operators such as&& evaluate their operands from left to right and only evaluatethe smallest
number of operands necessary to determine the result.

Page 6 of 14

A. List all possible outputs of the program in the following blanks.

(You might not use all the blanks.)

_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

B. If we modified line 10 of the code to change the> comparison to>=, it would cause the program flow
to print out zero counter values. With this change, how many possible outputs are there?

(Just give a number, you do not need to list them all.)

NEW NUMBER OF POSSIBLE OUTPUTS = __________

Page 7 of 14

Problem 5. (10 points):
Consider the following C program:

void handler1(int sig) {
printf("Phantom\n");
exit(0);

}

int main()
{

pid_t pid1;

signal(SIGUSR1, handler1);

if((pid1 = fork()) == 0) {
printf("Ghost\n");
exit(0);

}
kill(pid1, SIGUSR1);
printf("Ninja\n");
return 0;

}

Use the following assumptions to answer the questions:

• All processes run to completion and no system calls will fail.

• printf() is atomic and callsfflush(stdout) after printing argument(s) but before returning.

Mark each column that represents a valid possible output of this program with ‘Yes’ and each column which
is impossible with ‘No’.

Phantom Ninja Ghost Ninja Ninja
Ninja Phantom Ninja Ghost Phantom

Ghost Phantom Ninja

Page 8 of 14

Problem 6. (6 points):
Consider a system with 10 GB of physical memory (with a 4 KB page size) and a 50 GB disk drive with the
following characteristics:

• 512-byte sectors

• 800 sectors/track

• 15,000 RPM (i.e., 4ms to complete one full revolution)

• 8ms average seek time

Imagine an application thatMALLOC ()s nearly 50 GB of space, initializes it to all zeros, and then randomly
selects integers from across the full space and increments them. (Assume that there are no other processes.)

A. What percentage of the integers selected would result in page faults?_____

B. What is the average time to service a page fault? (round to the nearest millisecond)_____

C. Approximately how many integers can be incremented per second? (again, rounding is fine)_____

D. If an additional 15 GB of physical memory were available, how many integers could be incremented
incremented per second? (again, rounding is fine)_____

Page 9 of 14

Problem 7. (7 points):
Consider the following code:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main() {
char c;
int file1 = open("buffer.txt", O_RDONLY);
int file2;
int file3 = open("buffer.txt", O_RDONLY);

read(file1, &c, 1);
file2 = dup(file1);
read(file1, &c, 1);
read(file2, &c, 1);

printf("1 = %c\n", c);

int pid = fork();
if(pid == 0) {

read(file3, &c, 1);
printf("2 = %c\n", c);

dup2(file2, file3);
close(file1);
read(file3, &c, 1);
printf("3 = %c\n", c);

file1 = open("buffer.txt", O_RDONLY);
read(file1, &c, 1);
printf("4 = %c\n", c);

} else {
waitpid(pid, NULL, 0);
printf("5 = %c\n", c);

read(file3, &c, 1);
printf("6 = %c\n", c);
close(file2);
dup2(file1, file2);
read(file1, &c, 1);
printf("7 = %c\n", c);

}
return 0;

}

Page 10 of 14

Assume that the disk filebuffer.txt contains the string of bytesPRECOUNT . Also assume that all
system calls succeed. What will be output when this code is compiled and run? You may not need all the
lines in the table given below.

Output Line Number Output

1st line of output

2nd line of output

3rd line of output

4th line of output

5th line of output

6th line of output

7th line of output

Page 11 of 14

Problem 8. (8 points):

Imagine a system with the following attributes:

• The system has 1MB of virtual memory

• The system has 256KB of physical memory

• The page size is 4KB

• The TLB is 2-way set associative with 8 total entries.

The contents of the TLB and the first 32 entries of the page table are given below.All numbers are in
hexadecimal.

TLB
Index Tag PPN Valid

0 05 13 1
3F 15 1

1 10 0F 1
0F 1E 0

2 1F 01 1
11 1F 0

3 03 2B 1
1D 23 0

Page Table
VPN PPN Valid VPN PPN Valid

00 17 1 10 26 0
01 28 1 11 17 0
02 14 1 12 0E 1
03 0B 0 13 10 1
04 26 0 14 13 1
05 13 0 15 1B 1
06 0F 1 16 31 1
07 10 1 17 12 0
08 1C 0 18 23 1
09 25 1 19 04 0
0A 31 0 1A 0C 1
0B 16 1 1B 2B 0
0C 01 0 1C 1E 0
0D 15 0 1D 3E 1
0E 0C 0 1E 27 1
0F 2B 1 1F 15 1

Page 12 of 14

A. Warmup Questions

(a) How many bits are needed to represent the virtual addressspace?_____

(b) How many bits are needed to represent the physical address space?_____

(c) How many bits are needed to represent a page table offset?_____

B. Virtual Address Translation I

Please step through the following address translation. Indicate a page fault by entering ’-’ for Physical
Address.

Virtual address: 0x1F213

Parameter Value Parameter Value

VPN 0x TLB Hit? (Y/N)

TLB Index 0x Page Fault? (Y/N)

TLB Tag 0x Physical Address 0x

Use the layout below as scratch space for the virtual addressbits. To allow us to give you partial
credit, clearly mark the bits that correspond to the VPN, TLBindex (TLBI), and TLB tag (TLBT).

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Please go to the next page for part C)

Page 13 of 14

C. Virtual Address Translation II

Please step through the following address translation. Indicate a page fault by entering ’-’ for Physical
Address.

Virtual address: 0x14213

Parameter Value Parameter Value

VPN 0x TLB Hit? (Y/N)

TLB Index 0x Page Fault? (Y/N)

TLB Tag 0x Physical Address 0x

Use the layout below as scratch space for the virtual addressbits. To allow us to give you partial
credit, clearly mark the bits that correspond to the VPN, TLBindex (TLBI), and TLB tag (TLBT).

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 14 of 14

