
15-213 Introduction to Computer Systems

Exam 1
February 28, 2006

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam. Notes are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

Problem Max Score

1 10

2 10

3 10

4 15

5 10

6 20

Total 75

1

1. Integers (10 points)

For each of the following propositions, indicate if they are true or false. If false, give a
counterexample. We assume that the variables are declared as follows

int x,y;
unsigned u,v;

and initialized to some unknown value. You should formulate your counterexamples in
terms of the word size w. We have given the first answer as an example. You may assume
right shift is arithmetical.

If x > 0 then x + 1 > 0 false x = 2w − 1

If x < 0 then x * 2 < 0 false x = −2w−1

If x > 0 then x * x > 0 false x = 2w/2

u >= 0 true

u <= -1 true

If x > y then -x < -y false x = 0 and y = −2w−1

If u > v then -u > -v false u = 2 and v = 1

If x >= 0 then -x <= 0 true

If x < 0 then -x > 0 false x = −2w−1

(unsigned) x == x true

(x << 1) >> 1 == x false 2w−2

2

2. Floating Point (10 points)

Fill in the blank entries in the following table. We assume the standard representation of
single-precision floating point numbers with 1 sign bit, k = 8 bits for the exponent and
n = 23 bits for the fractional value. This means the bias is 27 − 1 = 127.

Value Form (−1)s ×M × 2E Hexadecimal
for 1 ≤ M < 2 Representation

132 1.00001× 27 0x43040000

−11
2

−1× 1.1× 20 0xBFC00000

1
2

1.0× 2−1 0x3F000000

3
8

1.1× 2−2 0x3EC00000

2−149 1.0× 2−149 0x00000001

3

3. Structures and Alignment (10 points)

Consider the following C declaration which is part of a small cache simulator.

typedef struct {
char valid;
char dirty;
int tag;
char block[32];
int stamp;

} cache_line;

A cache_line structure will be 44 bytes long.

1. (5 points) Assuming that a cache_line structure c is allocated at address 0x08000000 ,
give the values each of the following expressions.

&c.valid 0x08000000

&c.dirty 0x08000001

&c.tag 0x08000004

&c.block 0x08000008

&c.stamp 0x08000028

2. (5 points) Which of the following is always true, always false, or undefined (for
example, if it could yield different answers at different times, or if it compares ele-
ments of different type).

c.block[31] == *(c.block+31) always true

&c.valid == &c.dirty always false

&c.block[32] == &c.stamp undefined

*&c.dirty == c.dirty always true∗

&*c.block == c.block always true

∗ There was a typographical error in this line, so we also accepted undefined as a
correct answer.

4

4. Caches (15 points)

We continue the cache simulator. We recall the declaration for cache_line for reference
and then declare the representation of main memory, sets of cache lines, and the cache
itself. We also declare a counter, to be incremented on every cache access to implement
an LRU cache line replacement policy.

typedef struct {
char valid;
char dirty;
int tag;
char block[32];
int stamp;

} cache_line;

char main_memory[1<<16]; /* array representing main memory */
typedef cache_line cache_set[4]; /* set of cache lines */
cache_set cache[16]; /* cache, uninitialized */
int counter = 0; /* counter for LRU replacement policy */

1. (5 points) Fill in the blanks:

The simulated cache is 4 way associative,

where each cache block contains 32 bytes. In total,

the cache holds 2048 bytes. The simulated main

memory holds 216 bytes and addresses may

be 16 bits wide.

5

2. (10 points) Complete the following code to load a byte from our simulated memory
hierarchy. Assume a function int lru(int i); which, when given a set index
i , returns the least recently used cache line in set i . Assume moreover, that if the
dirty bit of this cache line is on, the lru function will write it back to memory,
implementing a write-back policy.

We also assume a function
void copy_block(char* src, char* dest);
which copies a cache block from src to dest .

char load_byte(unsigned short addr) {
int j;
int tag = addr & 0xFE00;
int i = (addr & 0x01E0) >> 5;
int offset = addr & 0x001F;
for (j = 0; j < 4; j++) {

if (cache[i][j].valid && tag == cache[i][j].tag) {
cache[i][j].stamp = counter++;
return (cache[i][j].block)[offset];

}
}
j = lru(i);
copy_block(&main_memory[addr & 0xFFE0], cache[i][j].block);
cache[i][j].valid = 1;
cache[i][j].dirty = 0;
cache[i][j].tag = tag;
cache[i][j].stamp = counter++;
return (cache[i][j].block)[offset];

}

6

5. Assembly Language (10 points)

For reference, we repeat the relevant declarations from the previous question.

typedef struct {
char valid;
char dirty;
int tag;
char block[32];
int stamp;

} cache_line;
typedef cache_line set[4];
set cache[16];

Fill in the missing parts of the C program and the assembly code so that the assembly
code implements the C function. The C function is supposed to reset the cache by clearing
all valid flags. Recall that on the x86-64, the imulq instruction can take a constant, a
source register, and a destination register in that order.

void reset() {
int i,j;
for (i = 0; i < 16; i++)

for (j = 0; j < 4; j++) {
cache[i][j].valid = 0;

}
}

reset:
xorl %ecx, %ecx

.L9:
movslq %ecx,%rax
movl $3, %edx
imulq $176, %rax, %rax

.L8:
movb $0, cache(%rax)
addq $44, %rax
decl %edx
jns .L8
incl %ecx
cmpl $15, %ecx
jle .L9
ret

7

6. Optimization (20 points)

Consider the following version of the copy_block function that we assumed in Problem
4 for copying a cache block to and from memory. Recall that %al represents the lowest
byte of the %rax register.

copy_block:
xorl %ecx, %ecx

.L19:
movslq %ecx,%rdx
incl %ecx
movzbl (%rdx,%rdi), %eax
cmpl $31, %ecx
movb %al, (%rdx,%rsi)
jle .L19
ret

1. (6 pts) For the inner loop, show the corresponding processor operations using the
register renaming notation used in class and in the textbook. Do not rename regis-
ters that are invariant throughout multiple loop iterations.

movslq %ecx,%rdx movslq %ecx.0 → %rdx.0

incl %ecx incl %ecx.0 → %ecx.1

movzbl (%rdx,%rdi), %eax load (%rdx.0,%rdi) → %eax.0

cmpl $31, %ecx cmpl $31, %ecx.1 → cc.1

movb %al, (%rdx,%rsi) store %al.0 → (%rdx.0,%rsi)

jle .L19 jle-taken cc.1

8

2. (10 pts) Label the following timed data dependency diagram with operations from
the program (boxes with rounded corners) and possibly renamed registers (square
boxes).

Cycle

1

2

3

4

5

6

7

8

9

10

11

load

inc

jmp

Iteration 1

store

mov

cmp

%rsi

%ecx.1

%ecx.0

%rdi

cc.1

%al.0

%rdx.0

9

3. (2 pts) This code may execute more slowly if there is aliasing between the source
and destination block. Briefly explain why.

Because the load on the next iteration may have to wait for the store from the
previous iteration if they access the same memory location.

4. (2 pts) Despite the fact that this code has good locality because it strides through
memory in increments of one, it is not particularly efficient. Describe one way to
improve its efficiency significantly. You may show source code if it helps your ex-
planation, but you are not required to do so.

It’s slow, because it only moves one byte at a type. Moving 8 4-byte double
words or 4 8-byte quad words would likely be much faster.

10

