Carnegie Mellon

Synchronization

15-213/18-243: Introduction to Computer Systems
26 Lecture, 27 April 2010

Instructors:
Bill Nace and Gregory Kesden

(c) 1998 - 2010. All Rights Reserved. All work contained herein is copyrighted
and used by permission of the authors. Contact 15-213-staff@cs.cmu.edu for
permission or for more information.

Carnegie Mellon

Last Time: Process-based Server

Connection Requests

>®
Client 1 ristentd Listening
Server Server
Client 1 Process

>
data connfd

Client 2
Server
Process

Client 2 .
data connfd

B Each client handled by independent process
® No shared state between them
® When child created, each has copy of 1istenfd and connfd

= Parent must close connfd, child must close 1istenfd

Carnegie Mellon

Last Time: A Process With Multiple Threads

® Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Share common virtual address space
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread)

shared libraries

brk

\ 4

run-time heap
read/write data

PC—

Thread 1 context: read-only code/data Thread 2 context:

Data registers
Condition codes
SP1

PC1

Data registers
Condition codes
SP2

PC2

Today

B Synchronization
B Races, deadlocks, thread safety

Shared Variables in Threaded C Programs

B Question: Which variables in a threaded C program are shared
variables?

= The answer is not as simple as “global variables are shared” and
“stack variables are private”

B Requires answers to the following questions:
= What is the memory model for threads?

= How are variables mapped to each memory instance?
= How many threads might reference each of these instances?

Threads Memory Model

B Conceptual model:
= Multiple threads run within the context of a single process
= Each thread has its own separate thread context

= Thread ID, stack, stack pointer, program counter, condition codes, and
general purpose registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments
= Open files and installed handlers

B Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but
= Any thread can read and write the stack of any other thread

B Mismatch between the conceptual and operation model is a
source of confusion and errors

Carnegie Mellon

Thread Accessing Another Thread’s Stack

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)
int main () {
{ int myid = (int) wvargp;
int i; static int svar = 0;
pthread t tid;
char *msgs[2] = { printf("[%d]: %s (svar=%d)\n",
"Hello from foo", myid, ptr[myid], ++svar);
"Hello from bar"

};

ptr = msgs;
Peer threads access main thread’s stack
for (i = 0; i < 2; it+) indirectly through global ptr variable
Pthread create(&tid,
NULL,
thread,

(void *)i);
Pthread exit (NULL) ;

Mapping Variables to Memory Instances

Global var: 1 instance (ptr [data])

Local vars: 1 instance (1 .m, msgs.m)

Carnegie Mellon

N

\ il

char **ptr; /* globa

int main ()
{
int 1i;
pthread
char *msgs[2] = {
"Hello from foo",
"Hello from bar"
};

ptr = msgs;

for (1 = 0; i < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;

Local var: 2 instances
myid.pO [peer thread 0’s stack],
myid.pl [peer thread 1’s stack

/* thread rouvutine */

void *thread/(void *vargp)

{
int myid = (int)vargp;
static int svar = 0;

printf (" [%d]/: %s (svar=%d)\n",
myid, ptr[myid], ++svar);

Local static var: 1 instance (svar [data])

Shared Variable Analysis

® Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no

myid.pl no no yes

B Answer: A variable x is shared iff multiple threads reference at
least one instance of x. Thus:
= ptr, svar, and msgs are shared

= i andmyid are not shared

Carnegie Mellon

badcnt. c: Improper Synchronization

/* shared */ /* thread routine */
volatile unsigned int cnt = 0; void *count (void *arg) {
#define NITERS 100000000 int i;
for (i=0; i<NITERS; i++)
int main() { cnt++;
pthread t tidl, tid2; return NULL;
Pthread create(&tidl, NULL, }

count, NULL) ;

Pthread create(&tid2, NULL,
count, NULL) ; linux> ./badcnt

BOOM! cnt=198841183

Pthread join(tidl, NULL);

Pthread join(tid2, NULL) ; linux> ./badent
- BOOM! cnt=198261801

if (cnt !'= (unsigned)NITERS*2) _
printf ("BOOM! cnt=%d\n", cnt); linux> ./badent
else BOOM! cnt=198269672

printf ("OK cnt=%d\n", cnt);

cnt should be

equal to 200,000,000
What went wrong?

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i=0; i<NITERS; i++)
cnt++;

Corresponding assembly code

([.19:
movl -4 (%ebp) , $eax
Head (H,) < cmpl $99999999, %eax
jle .L12
\ _— jmp .L10
U ;::: cn: ((lIJ'i; movl cnt, %$eax # Load
pStoreCI:1t (Si) leal 1(%eax) , %edx # Update
¢ i movl %edx,cnt # Store
(.L11:
movl -4 (%ebp) , 3eax
. leal 1 (%eax) , %edx
Tail (T;) 4 movl %edx,-4 (%ebp)
jmp .L9

Concurrent Execution

B Key idea: In general, any sequentially consistent interleaving is
possible, but some give an unexpected result!
= |; denotes that thread i executes instruction |
= %eax; is the content of %eax in thread i’s context

i (thread) instr; %eaxi %eax; cnt

1 Hi1 - -
L
U
S1
HZ - -
L, - 1
U; - 2
S - 2
T, - 2
T1 1 -

kRO
]

Time

R INININININR(R|=
NININR| R R ROIOIO

oK

Concurrent Execution (cont)

B Incorrect ordering: two threads increment the counter, but the
result is 1 instead of 2

i (thread) instr; %eaxi %eax; cnt

1 H1 - - 0
1 L1 0 - 0
1 Ui 1 - 0
2 H, - 0
2 L, - 0 0

Q

= 1 S1 1 - 1

— 1 T 1 - 1
2 U, - 1 1
2 S, - 1 1

M 2 T, i 1 1 Oops!

Concurrent Execution (cont)

® How about this ordering?

i (thread) instr; %eaxi %eax; cnt

1 H1

1 L,

2 H>

2 LZ

Q 2 U,
S 2 S,
I_ 1 U]_
1 S1

% 1 T1
2 T2

® We can analyze the behavior using a process graph

Carnegie Mellon

s

Carnegie Mellon

Progress Graphs
A progress graph depicts
Thread 2 prog grapicep
the discrete execution
state space of concurrent
o [o o o o
T threads
2 (L, S,)
¢ ° ° ° O ° Each axis corresponds to
S, the sequential order of
instructions in a thread
o [o o o o
U, Each point corresponds to
O ° ° O O ° a possible execution state
Inst., Inst
|_2 (1 z)
o [o o o o
H E.g., (L, S,) denotes state
2 where thread 1 has
O @ @ @ @ o—
completed L, and thread
H, L, U, S T !
2 has completed S,
Thread 1

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2 A trajectory is a sequence
of legal state transitions
i ¢ ° ° ¢ that describes one possible
T, concurrent execution of
¢ ° ° ° ° ® the threads.
s, ‘
Example:
o [o o [o
U, ‘ Hi, L1, U3, Ha, Ly, S1, Ty, Uz, S2, T2
o [o 0)y ey @
L ‘
o [o o [o
H, {
ey @ el - el § @ o—

Thread 1

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U,and S form a
critical section with
T respect to the shared
2 variable cnt
-
S, Instructions in critical
. sections (WRT to some
critical)

" U _ shared variable) should
section < U, Unsafe region not be interleaved
wrtcnt

L2 Sets of states where such
_ interleaving occurs
form unsafe regions
H,
— Thread 1
H, L, U, S, T
g J
N

critical section wrt cnt

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
safe

. o — &
T, T T Definition: A trajectory is safe
iff it does not enter any unsafe

e SZ. T > ° P x region

¢ > ® Claim: A trajectory is
Unsafe region correct (wrt cnt) iff it is safe

critical
section< U,

wrt cnt o o >e
|_2 unsafe
\ [) [)

® *— Thread 1

critical section wrt cnt

Semaphores

B Question: How can we guarantee a safe trajectory?
= \We must synchronize the threads so that they never enter an unsafe state

B Classic solution: Dijkstra's P and V operations on semaphores
= Semaphore: non-negative global integer synchronization variable
* P(s): [while (s == 0) wait(); s--;]
— Dutch for "Proberen" (test)
= V(s): [s++;]
— Dutch for "Verhogen" (increment)
= OS guarantees that operations between brackets [] are executed indivisibly
= Only one P or V operation at a time can modify s
= When while loop in P terminates, only that P can decrement s

B Semaphore invariant: (s >= 0)

Carnegie Mellon

badcnt.c: Improper Synchronization

/* shared */ /* thread routine */
volatile unsigned int cnt = 0; void *count (void *arg) {
#define NITERS 100000000 int i;
for (i=0; i<NITERS; i++)
int main() { cnt++;
pthread t tidl, tid2; return NULL;
Pthread create(&tidl, NULL, }

count, NULL) ;
Pthread create(&tid2, NULL,
count, NULL) ;

How to fix using semaphores?

Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

if (cnt !'= (unsigned)NITERS*2)
printf ("BOOM! cnt=%d\n", cnt);
else

printf ("OK cnt=%d\n", cnt);

Safe Sharing with Semaphores

B One semaphore per shared variable
H |nitially setto 1

B Here is how we would use P and V operations to synchronize
the threads that update cnt

/* Semaphore s is initially 1 */

/* Thread routine */
void *count (void *argqg)
{

int i;

for (i=0; i<NITERS; i++) {
P(s);
cnt++;
V(s);

}

return NULL;

}

Carnegie Mellon

Safe Sharing With Semaphores
Thread 2
1 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * * * * access to shared variable by
T, surrounding critical section with
1 1 0 0 0 0 1 1)
' P and V operations on
V(s) semaphore s (initially set to 1)
S, Semaphore invariant
0,0 A ed e - U creates a forbidden region
U, Unsafe region that encloses unsafe region and
= . . o1 o - LU0 is entered by any trajectory
LZ
g 0 [0 [J 0 [0
P(s) 1 1 0 0 0 0 1 1
k 1 1
. UL DL . — Thread 1
ﬂ H, P(s) L, U, S; V(s) T,
Initially
s=1

Wrappers on POSIX Semaphores

/* Initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */
void Sem init(sem t *sem, int pshared, unsigned int value) {
if (sem _init(sem, pshared, value) < 0)
unix error("Sem init");

}

/* P operation on semaphore sem */
void P(sem_t *sem) {
if (sem wait(sem))
unix error ("P");

}

/* V operation on semaphore sem */
void V(sem t *sem) {
if (sem post(sem))
unix error ("V");

Sharing With POSIX Semaphores

/* properly sync’d counter program */ /* thread routine */
#include '"csapp.h" void *count(void *argqg)
#define NITERS 10000000 {
int i;
volatile unsigned int cnt;
sem t sem; /* semaphore */ for (i=0; i<NITERS; i++) {
P(&sem) ;
int main() { cnt++;
pthread t tidl, tid2; V(&sem) ;
}
Sem init(&sem, 0, 1); /* sem=1 */ return NULL;

/* create 2 threads and wait */

linux> ./goodcnt 100000000
OK cnt=200000000

if (cnt !'= (unsigned)NITERS*2)
printf ("BOOM! cnt=%d\n", cnt);

else linux> ./goodcnt 100000000
printf("OK cnt=%d\n", cnt); OK cnt=200000000

exit(0) ;

} Warning:

Extremely slow!

Carnegie Mellon

Notifying With Semaphores

shared consumer
buffer thread

producer
thread

B Common synchronization pattern:
= Producer waits for slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

® Examples
= Multimedia processing:
* Producer creates MPEG video frames, consumer renders them

= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Carnegie Mellon

Producer-Consumer on a Buffer That

Holds One Item

/* bufl.c - producer-consumer
on l-element buffer */
#include “csapp.h”

#define NITERS 5

void *producer (void *argqg) ;
void *consumer (void *argqg) ;

struct {
int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

int main() {

pthread t tid producer;
pthread t tid consumer;

/* initialize the semaphores */
Sem init(&shared.empty, 0, 1);
Sem init(&shared.full, 0, 0);

/* create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL) ;
Pthread join(tid consumer, NULL) ;

exit (0);

Carnegie Mellon

Producer-Consumer (cont)

Initially: empty =1, full=0

/* producer thread */
void *producer (void *arg) ({
int i, item;

for (i=0; i<NITERS;
/* produce item */
item i/
printf ("produced %d\n", item);

i++) |

/* write item to buf */
P (&shared.empty) ;
shared.buf = item;
V(&shared. full) ;

}

return NULL;

}

/* consumer thread */
void *consumer (void *arg) ({
int i, item;

for (i=0; i<NITERS; i++) {
/* read item from buf */
P (&shared. full) ;
item shared.buf;
V(&shared.empty) ;

/* consume item */
printf ("consumed %d\n“, item);

}
return NULL;

}

Counting with Semaphores

B Remember, it’s a non-negative integer
= So, values greater than 1 are legal

B Lets repeat thing 5 () 5 times for every 3 of thing 3 ()

int main() {
pthread t tid five, tid three;

/* thing 5 and thing 3 */
#include “csapp.h”

/* initialize the semaphores */
Sem init(&five, 0, 5);
Sem init(&three, 0, 3);

sem t five;
sem t three;

void *five times(void *argq);
void *three times(void *arg);

/* create threads and wait */

Pthread create(&tid five, NULL,
five times, NULL);

Pthread create(&tid three, NULL,
three times, NULL);

Carnegie Mellon

Counting with Semaphores (cont)

Initially: five =5, three=3

/* thing 5() thread */
void *five times(void *arg) ({
int i;

while (1) {

for (i=0; i<5; i++) {
/* wait & thing 5() */
P(&five) ;
thing 5();

}

V(&three) ;

V(&three) ;

V(&three) ;

}
return NULL;

}

/* thing 3() thread */
void *three times(void *arg) {
int i;

while (1) {
for (i=0,; i<3; i++) {
/* wait & thing 3() */
P(&three) ;
thing 3();
}
V(&five) ;
V(&five) ;
V(&five) ;
V(&five) ;
V(&five) ;
}
return NULL;

}

Carnegie Mellon

Today

B Races, deadlocks, thread safety

Carnegie Mellon

N

B A race occurs when correctness of the program depends on a
thread reaching point x before another thread reaches pointy

One worry: races

/* a threaded program with a race */
int main() {
pthread t tid[N];
int i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (1 = 0; 1 < N; i++)
Pthread join(tid[i], NULL);
exit(0) ;
}

/* thread routine */

void *thread(void *vargp) {
int myid = *((int *)vargp):
printf ("Hello from thread %d\n", myid) ;
return NULL;

Race Elimination

B Make sure there is no unintended sharing of state

/* a threaded program with a race removed*/
int main() {
pthread t tid[N];
int i;
for (i = 0; i < N; i++) {
int *valp = malloc(sizeof (int));
*valp = 1i;
Pthread create(&tid[i], NULL, thread, valp);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
exit (0) ;
}

/* thread routine */

void *thread(void *vargp) {
int myid = *((int *)vargp)
free (vargp) ;

printf ("Hello from thread %d\n", myid);
return NULL;

Another worry: Deadlock

B Processes wait for condition that will never be true

B Typical Scenario
= Processes 1 and 2 needs two resources (A and B) to proceed
= Process 1 acquires A, waits for B

= Process 2 acquires B, waits for A
= Both will wait forever!

Deadlocking With POSIX Semaphores

int main ()

{
pthread t tid[2];
Sem init(&mutex[0], O, 1); /* mutex[0] =1 */
Sem init(&mutex[1], O, 1); /* mutex[l] =1 */
Pthread create(&tid[0], NULL, count, (void*) O0);
Pthread create(&tid[1], NULL, count, (void*) 1);
Pthread join(tid[0], NULL);
Pthread join(tid[1], NULL);
printf ("cnt=%d\n", cnt);
exit (0) ;

void *count (void *vargp)
{
int 1i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {
P(&mutex[id]); P(&mutex[l-id]) ;
cnt++;
V(&mutex[id]); V(&mutex[l-id]) ;
}

return NULL;

Carnegie Mellon

Deadlock Visualized in Progress Graph

Thread 2 Locking introduces the potential
for deadlock: waiting for a
condition that will never be true
Vls,) - Any trajectory that enters the
deadlock region will eventually
reach the deadlock state,
waiting for either so or s; to
become nonzero

Forbidden region
fors,

V(s,) -

P(sy) - Other trajectories luck out and

® skirt the deadlock region
deadlock

P(s.) region fors,
) -

Forbidden region

Unfortunate fact: deadlock is
deadlock state often non-deterministic

| | | | Thread 1
/ P(s,) P(s,) V(s,) V(s,)

so=sl=1

Carnegie Mellon

AVOid i 1] g Dea d |0Ck Acquire shared resources in the same order

int main ()

{

pthread t tid[2];

Sem init(&mutex[0], O, 1); /* mutex[0] = 1 */
Sem init(&mutex[1], O, 1); /* mutex[l] = 1 */
Pthread create(&tid[0], NULL, count, (void*) O0);
Pthread create(&tid[1], NULL, count, (void*) 1);
Pthread join(tid[0], NULL);

Pthread join(tid[1], NULL);

printf ("cnt=%d\n", cnt);

exit (0);

void *count (void *vargp)
{
int i;
int id = (int) vargp;
for (i = 0; 1 < NITERS; i++) {
P(&mutex[0]); P(&mutex[1l]);
cnt++;
V(&mutex[id]); V(&mutex[1l-id]) ;
}
return NULL;

Carnegie Mellon

Avoided Deadlock in Progress Graph

Thread 2 No way for trajectory to
enter a deadlock region

V(s,) - Threads acquire locks in
Forbidden region the same order
fors,
V(s,) - Order in which locks are

released is immaterial

P(s,) —

Forbidden region
P(s,)— fors,

| I | I Thread 1
/ P(s,) P(s,) V(s,) V(s,)

so=sl=1

Crucial concept: Thread Safety

B Functions called from a thread (without external
synchronization) must be thread-safe

= Meaning: it must always produce correct results when called repeatedly
from multiple concurrent threads

B Some examples of thread-unsafe activities:
= Failing to protect shared variables

= Relying on persistent state across invocations
= Returning a pointer to a static variable

Calling a thread-unsafe functions

Thread-Unsafe Functions (Class 1)

B Failing to protect shared variables
= Fix: Use P and V semaphore operations
= Example: goodcnt.c
= |ssue: Synchronization operations will slow down code
= e.g., badcnt requires 0.5s, goodent requires 7.9s

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

B Relying on persistent state across multiple function invocations
= Example: Random number generator (RNG) that relies on static state

/* rand: return pseudo-random integer on 0..32767 */
static unsigned int next = 1;
int rand(void)
{
next = next*1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

Carnegie Mellon

Making Thread-Safe RNG

B Pass state as part of argument
= and, thereby, eliminate static state

/* rand - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

}

B Consequence: programmer using rand r must maintain seed

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

B Returning a ptrtoa static
variable

® Fixes:

= 1. Rewrite code so caller passes
pointer to struct

— Issue: Requires changes in
caller and callee

= 2. Lock-and-copy

— Issue: Requires only simple
changes in caller (and none
in callee)

— However, caller must free
memory

struct hostent

*gethostbyname (char name)

{
static struct hostent h;
<contact DNS and fill in h>
return &h;

}

hostp = Malloc(...);
gethostbyname r (name, hostp) ;

struct hostent
*gethostbyname ts(char *name)

{

struct hostent *q = Malloc(...);
struct hostent *p;

P (&mutex); /* lock */

p = gethostbyname (name) ;

*q = *p;

V (&mutex) ;
return q;

/* copy */

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

B Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

" Fix: Modify the function so it calls only thread-safe functions ©

Thread-Safe Library Functions

® All functions in the Standard C Library (at the back of your K&R
text) are thread-safe
= Examples:malloc, free, printf, scanf

B Most Unix system calls are thread-safe, with a few exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime r

ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)

localtime 3 localtime r
rand 2 rand r

Carnegie Mellon

Threads Summary

B Threads provide another mechanism for writing concurrent
programs

B Threads are growing in popularity
= Somewhat cheaper than processes
= Easy to share data between threads

B However, the ease of sharing has a cost:

= Easy to introduce subtle synchronization errors PFOE%T"&m\'m,Pg
, . , with POSIX™ =
= Which are very, very, very, very, very difficult to discover Thudids |
= Tread carefully with threads! N

® For more info:
= D. Butenhof, “Programming with Posix Threads”, Addison-Wesley, 1997

Summary

B Synchronization
= Shared variables
= Process graphs

¥ Thread Safety

= Deadlocks, semaphores

B Next Time:

= Multi-core Architectures

