Carnegie Mellon

Exceptions

15-213/18-243: Introduction to Computer Systems
13t Lecture, 25 February 2010

Instructors:
Bill Nace and Gregory Kesden

(c) 1998 - 2010. All Rights Reserved. All work contained herein is copyrighted
and used by permission of the authors. Contact 15-213-staff@cs.cmu.edu for
permission or for more information.

The Exam

B Tuesday, 2 March

= Attend your assigned Lecture section

B Closed book, closed notes, closed friend, open mind

= \We will provide reference material
B Quite unlike past exams

B Material from Lectures 1-9, Labs 1 & 2
= Representation of Integers, Floats
= Machine code for control structures, procedures
= Stack discipline
= Layout of Arrays, Structs, Unions in memory
= Floating point operations

Carnegie Mellon

Last Time: Memory Hierarcy

A
LO: CPU registers hold words retrieved from
. . L1 cache
registers
L1: 0n'Chip L1 L1 cache holds cache lines retrieved from L2
Sma"er,) cache (SRAM) cache
faster,
costlier .
byt L2: Off'Chlp L2 L2 cache holds cache lines retrieved
per byte . cache (SRAM) from main memory
. main memory Main memory holds disk blocks
erger’ L3: (DRAM) retrieved from local disks
siower,
cheaper
per byte local secondary storage Local disks hold files retrieved

from disks on remote network

L4: (local disks) servers

remote secondary storage
(tapes, distributed file systems, Web servers)

Carnegie Mellon

Last Time: General Cache Org (S, E, B)
E = 2¢ lines per set
AL
r N\
r /
o000 —
S=Zssets< eoooe
\ o000
Cache size:
- we | [o[2]2]r - S x E x B data bytes
valid bit ~~ ~— —
B = 2® bytes per cache block (the data)

Last Time: Optimizing for Cache Accesses

® Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

n/B blocks
. . AL
B Second (block) iteration: - - N
= Same as first iteration L L =

]
*

= 2n/B * B2/8 = nB/4

H Total misses: Block size B x B

= nB/4 * (n/B)? = n3/(4B)

Today

® Exceptional Control Flow
® Processes

Carnegie Mellon

Control Flow

B Processors do only one thing:

= From startup to shutdown, a CPU simply reads and executes (interprets) a
sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,

Time
inst,

inst,

inst_
<shutdown>

Carnegie Mellon

Altering the Control Flow

® Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return

Both react to changes in program state

B |nsufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
= jnstruction divides by zero
= yser hits Ctrl-C at the keyboard
= System timer expires

B System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

B Exists at all levels of a computer system
B Low level mechanisms

= Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

= Combination of hardware and OS software

® Higher level mechanisms
= Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
= Implemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Carnegie Mellon

N

Exceptions

B An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process Operating
System
event — | |_current y exception
Lnext exception
processing
e return to I_current by exception

*return to |_next
*abort

® Examples:
div by 0, arithmetic overflow, page fault, /O request completes, Ctrl-C

Carnegie Mellon

Interrupt Vectors

Exception
numbers

code for B Each type of event has a
exception handler 0 unique exception
Exception
b Table / code for number k
exception handler 1

B k = index into exception
table

= a.k.a. interrupt vector

code for
) o— exception handler 2

n-1

® Handler k is called each

code for time exception k occurs
exception handler n-1

Wil

Asynchronous Exceptions (Interrupts)

B Caused by events external to the processor
= |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

® Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

= Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

Synchronous Exceptions

B Caused by events that occur as a result of executing an
instruction:
= Traps
* |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction
= Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Carnegie Mellon

s

Trap Example: Opening File

® User calls: open (filename, options)

B Function open executes system call instruction int
0804d070 < libc open>:

804d082: cd 80 int $0x80
8044084 : 5b pop $ebx

User Process Operating

System

int $0x80 ¥ exception

pop %ebx

open file

returns fd

B OS must find or create file, get it ready for reading or writing
B Returns integer file descriptor

Carnegie Mellon

N

Fault Example: Page Fault
int a[1000];

® User writes to memory location main ()

B That portion (page) of user’s memory { a[500] = 13;

is currently on disk }

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Operating
System

User Process

exception: page fault

movl v

create page
and load into

return

B Page handler must load page into physical memory
B Returns to faulting instruction
B Successful on second try

int a[1000];
main ()

{
a[5000] = 13;

}

Fault Example: Invalid Memory Reference

User Process

movl l

80483b7: c7 05 60 e3 04 08 0d movl

exception: page fault

$0xd,0x804e360

signal process

B Page handler detects invalid address
B Sends SIGSEGYV signal to user process

Operating
System

detect
invalid

B User process exits with “segmentation fault”

Carnegie Mellon

s

Carnegie Mellon

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check pp. 183: http://download.intel.com/design/processor/manuals/253665.pdf

Carnegie Mellon

Today

® Processes

Processes

B Definition: A process is an instance of a running program
= One of the most profound ideas in computer science
= Not the same as “program” or “processor”

B Process provides each program with two key abstractions:
= Logical control flow
= Each program seems to have exclusive use of the CPU

= Private virtual address space
= Each program seems to have exclusive use of main memory

® How are these lllusions maintained?
= Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks

Concurrent Processes

B Two processes run concurrently if their flows overlap in time
B Otherwise, they are sequential

® Examples:
= Concurrent: A& B,A&C
= Sequential: B& C

Process A Process B Process C

Tme @ | ______

User View of Concurrent Processes

B Control flows for concurrent processes are physically disjoint in
time

® However, we can think of concurrent processes are running in
parallel with each other

Process A Process B Process C

Tme @ | ______

Carnegie Mellon

Context Switching

B Processes are managed by a shared chunk of OS code
called the kernel

= |[mportant: the kernel is not a separate process, but rather runs as part
of some user process

® Control flow passes from one process to another via a

context switch
I
Process A 1 Process B
I
I
1 : user code
\:\ kernel code }context switch
. 1
Time : 1 user code
/ll/ kernel code }context switch
I
1 : user code
[
I

Carnegie Mellon

fork: Creating New Processes

mint fork(void)

= creates a new process (child process) that is identical to the calling
process (parent process)

= returns O to the child process

= returns child’s pid to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");
}

B Fork is interesting (and often confusing) because
it is called once but returns twice

Understanding fork

Process n

»

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

pid=m

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;
}

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

hello from parent Which one is first?

Child Process m

Carnegie Mellon

N

“pid_t pid = fork();
if (pid == 0) {

printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid == 0) {
pid=0 printf ("hello from
} else {

printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid == 0) {

‘ printf ("hello from
} else {

printf ("hello from
}

hello from child

child\n") ;

parent\n") ;

Fork Example #1

® Parent and child both run same code

= Distinguish parent from child by return value from fork

B Start with same state, but each has private copy
= |ncluding shared output file descriptor

= Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
printf ("Hello!") ;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}
printf ("Bye from process %d with x = %d\n", getpid(), x);

Fork Example #1

void forkl ()

{
int x = 1;
printf ("Hello!") ;
pid t pid = fork();
if (pid == 0) {

} else {
printf ("Parent has x = %d\n",
}

printf ("Bye from process %d with x

printf ("Child has x = %d\n", ++x);

-=X);

= %d\n", getpid(), x);

Carnegie Mellon

N

Fork Example #2

B Both parent and child can continue forking

void fork2()
{

printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork() ;
printf ("Bye\n") ;

Carnegie Mellon

N

Carnegie Mellon

N

Fork Example #3

void fork3()
{
printf ("LO\n") ;
if (fork() '= 0){
printf ("L1\n") ;
if (fork() !'= 0){
printf ("L2\n") ;
fork () ;
}

}
printf ("Bye\n") ;

Carnegie Mellon

N

Fork Example #4

void fork4 ()
{
printf ("LO\n") ;
if (fork() == 0) {
printf ("L1\n") ;
if (fork() == 0) {
printf ("L2\n") ;
fork () ;
}

}
printf ("Bye\n") ;

exit: Ending a process

B void exit(int status)
= exits a process
= Normally return with status O
= atexit () registers functions to be executed upon exit

void cleanup (void) ({
printf ("cleaning up\n");

}

void fork5() {
atexit (cleanup) ;
fork () ;
exit (0) ;

Zombies

¥ |dea
= When process terminates, still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead
® Reaping
= Performed by parent on terminated child
= Parent is given exit status information
= Kernel discards process

B What if parent doesn’t reap?

= |[f any parent terminates without reaping a child, then child will be reaped
by init process

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Carnegie Mellon

Zombie Example void Fork7()

if (fork() == 0) {
/* Child */
printf ("Child, PID = %d\n",
getpid()) ;

exit(0) ;
} else {
linux> ./forks 7 & printf ("Parent, PID = %d\n",
[1] 6639 getpid());
Parent, PID = 6639 while (1)
Child, PID = 6640 ; /* Infinite loop */
linux> ps }
PID TTY TIME CMD

6585 ttyp9 00:00:00 tecsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tecsh

6642 ttyp9 00:

® ps shows child process as
“defunct”

® Killing parent allows child
tobereaped by init

Carnegie Mellon

Nonterminating
Child Example

linux> ./forks 8
Parent, PID = 6675
Child, PID = 6676
linux> ps

linux> kill 6676
linux> ps

6585 ttyp9
6678 ttyp9

PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

PID TTY TIME CMD

void fork8 ()
{
if (fork() == 0) {
/* Child */
printf ("Child, PID = %d\n",

getpid()) ;
while (1)
; /* Infinite loop */
} else {
printf ("Parent, PID = %d\n",
getpid()) ;
exit (0) ;

® Child process still active even
though parent has terminated

® Must kill explicitly, or else will
keep running indefinitely

Carnegie Mellon

wait: Synchronizing with Children

mint wait(int *child status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

" ifchild status != NULL, then the object it points to will be setto a
status indicating why the child process terminated

= Terminated normally
= Terminated by signal

= Terminated and dumped core
= etc.

wait: Synchronizing with Children

void fork9 () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
}
else {
printf ("HP: hello from parent\n");
wait (&child status) ;
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
exit();

Carnegie Mellon

N

Carnegie Mellon

wait () Example

® |f multiple children completed, will take in arbitrary order

® Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forklO()
{
pid_t pid[N];
int i;
int child status;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (1 = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED(child_statuS))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));

else

printf ("Child %d terminate abnormally\n", wpid);

Carnegie Mellon

waitpid () : Waiting for a Specific Process

B waitpid(pid, &status, options)
= suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll ()
{
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(child;status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));

else
printf ("Child %d terminated abnormally\n", wpid) ;

Carnegie Mellon

execve : Loading and Running Programs

mint execve (
char *filename,
char *argv]],
char *envp][]

)

¥ Loads and runs
= Executable filename
= With argument list argv
= And environment variable list envp

B Does not return (unless error)
B Overwrites process, keeps pid
¥ Environment variables:

= “name=value” strings

Oxbfffffff

Null-terminated
environment
variable strings

Null-terminated
commandline
arg strings

unused

envp[n] = NULL

envp[n-1]

envp[0]

argv[argc] = NULL

argv[argc-1]

argv([0]

Linker vars

envp

argv

argc

Carnegie Mellon

execve: Example

envp[n] = NULL

envp[_n-1] » “PWD=/usr/wnace”
W > “PRINTER=franklin”
envp|[0] ——> “"USER=wnace”

argv[argc] = NULL
argv[argc-1] —> “/usr/include”
. 3 _lt//

argvlol —’ \\1s 44

Carnegie Mellon

execl and exec Family

m int execl (char *path, char *arg0, char *argl, .., 0)
® Loads and runs executable at path with args arg0, argl, ...
= path is the complete path of an executable object file
= By convention, argO is the name of the executable object file
= “Real” arguments to the program start with argl, etc.
= List of args is terminated by a (char *) 0 argument

= Environment taken from char **environ, which points to an array of
“name=value” strings:

= USER=wnace

* LOGNAME=wnace
= HOME=/afs/cs.cmu.edu/user/wnace

B Returns -1 if error, otherwise doesn’t return!

® Family of functions includes execv, execve (base function),
execvp, execl, execle, and execlp

Carnegie Mellon

exec: Loading and Running Programs

main() {
if (fork() == 0) {
execl ("/usr/bin/cp", "cp", "foo", "bar", 0);
}
wait (NULL) ;
printf ("copy completed\n") ;
exit();

Carnegie Mellon

Summary

® Exceptions
= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

¥ Processes
= At any given time, system has multiple active processes
= Only one can execute at a time, though

= Each process appears to have total control of
processor + private memory space

Summary (cont.)

B Spawning processes
= Callto fork

= One call, two returns

® Process completion
= Callexit

= One call, no return

B Reaping and waiting for Processes
= Callwait orwaitpid

B Loading and running Programs
= Call execl (or variant)
= One call, (hormally) no return

