Carnegie Mellon

Course Overview

15-213/18-243: Introduction to Computer Systems
1%t Lecture, 11 January 2010

Instructors:
Bill Nace and Gregory Kesden

The course that gives CMU its “Zip”!

Carnegie Mellon

Overview

® Course theme

B Five realities

® How the course fits into the CS/ECE curriculum
B Logistics

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality

B Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis
¥ These abstractions have limits
= Especially in the presence of bugs
= Need to understand details of underlying implementations

® Useful outcomes
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Great Reality #1.:

Carnegie Mellon

Ints are not Integers, Floats are not Reals

® Example 1: Is x2 2 0?

Jeoo 2.0

Fo.

A

= Float’s: Yes!

= |nt’s:

.o ,306... 1,307. ..

BAAA

D
e

AN_A_NA_

—

... 32,767...-32,768...

ZSTRSS

<H

.0.=32,767...-32,766 ...

= 40000 * 40000 => 1600000000

= 50000 * 50000 = ??

B Example 2:Is(x+y)+z = x+(y +2)?

= Unsigned & Signed Int’s: Yes!

= Float’s:
= (1e20 +-1e20) +3.14 -->3.14
= 1e20 + (-1e20 + 3.14) --> ??

xked.com/571

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

B Similar to code found in FreeBSD’s implementation of
getpeername

B There are legions of smart people trying to find vulnerabilities
in programs

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

Carnegie Mellon

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);

Carnegie Mellon

Computer Arithmetic

¥ Does not generate random values
= Arithmetic operations have important mathematical properties

I {4 I”

B Cannot assume al mathematical properties

= Due to finiteness of representations

usua

= |Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity

= Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

B Observation
= Need to understand which abstractions apply in which contexts
= Important issues for compiler writers and serious application programmers

Carnegie Mellon

Great Reality #2:
You’'ve Got to Know Assembly

B Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

B But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware

= x86 assembly is the language of choice!

Carnegie Mellon

Assembly Code Example

® Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
= |Incremented every clock cycle
= Read with rdtsc instruction

® Application

= Measure time (in clock cycles) required by procedure

double t;
start_counter();

PO;
t = get_counter();

printf("P required %f clock cycles\n", t);

Code to Read Counter

Carnegie Mellon

B Write small amount of assembly code using GCC’s asm facility

B |nserts assembly code into machine code generated by
compiler

static unsigned cyc_hi =

b

0
static unsigned cyc_lo = 0;

/* Set *hi1 and *1o to the high and low order bits
of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *1o)

{

asm("rdtsc; movl %%edx,%0; movl %¥%eax,%1"
: "=rI" (*h_i-), "=rI" (*-I_O)

: "%edx", "%eax");

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

® Memory is not unbounded
= |t must be allocated and managed
= Many applications are memory dominated

B Memory referencing bugs especially pernicious
= Effects are distant in both time and space
® Memory performance is not uniform

= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[1] = 1073741824, /* Possibly out of bounds */
return d[0];

.14

.14
.1399998664856
.00000061035156

.14, then segmentation fault

B Result is architecture specific
= | execute up to fun(11) on my Core 2 Duo Mac

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[1] = 1073741824, /* Possibly out of bounds */
return d[0];

.14

.14
.1399998664856
.00000061035156

.14, then segmentation fault

Explanation: Saved State
d7 ... d4

d3 ... do
al[1]
al@]

Location accessed by
fun (1)

Memory Referencing Errors

¥ C and C++ do not provide any memory protection
= Qut of bounds array references
= |nvalid pointer values
= Abuses of malloc/free

B Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

® How can | deal with this?

= Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

Carnegie Mellon

Carnegie Mellon

Memory System Performance Example

void copyij(int

int

{
int 1,7;

for (1 =0; 1

for (3 = 0;

dst[1][]]

src[2048][2048],
dst[2048][2048])

2048 ; 1++)
] < 2048; j++)
src[1]1[3];

void copyji(int

int

{
int 1,7;

— for (J = 0; jJ

™ for (i = O;

dst[i][]]

src[2048][2048],
dst[2048][2048])

2048 ; J++)
1L < 2048; 1++)
src[i][3];

B Hierarchical memory organization

21 times slower

B Performance depends on access patterns

= Including how step through multi-dimensional array

(Pentium 4)

Carnegie Mellon

The Memory Mountain

Read throughput (MB/s) Pentium Ill Xeon

1200 550 MHz

: 16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

« Working set size (bytes)

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

® Constant factors matter too!

® And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
B Must understand system to optimize performance
= How programs compiled and executed
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

Carnegie Mellon

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

50000

Best code (K. Goto)

Triple loop

2,250 4,500 6,750 9,000

matrix size

® Standard desktop computer, vendor compiler, using optimization flags
® Both implementations have exactly the same operations count (2n3)

® What is going on?

Carnegie Mellon

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000

Multiple threads: 4x

1
I
£ ¢ - Memory hiera'rchy and other optimizations: 20X

—_—

0

0 2,250 4,500 6,750

matrix size
B Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice

B Effect: less register spills, less L1/L2 cache misses, less TLB misses

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

¥ They need to get data in and out
= |/O system critical to program reliability and performance

® They communicate with each other over networks
= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

Carnegie Mellon

Role within CS/ECE Curriculum

CS 412 ECE 545/549
OS Practicum Capstone
CS 415 CS 441 ~ 410. CS411 ECE 340 ECE 447 ECE 349 ECE 348
Operating . Digital , Embedded Embedded
Compilers Architecture
Systems System Eng.

Databases Networks .
Systems Computation
N) / / /

Data Reps Network Processes Machine .
Protocols _ Mem.Mgmt Code Arithmetic / Execution Model
Memory System

Memory Model

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS 123
C Programming

Course Perspective

B Most Systems Courses are Builder-Centric
= Computer Architecture

= Design pipelined processor in Verilog
Operating Systems
= Implement large portions of operating system
Compilers
= Write compiler for simple language
Networking

* Implement and simulate network protocols

Carnegie Mellon

Carnegie Mellon

Course Perspective (Cont.)

® Our Course is Programmer-Centric

= Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer

= Enable you to
= Write programs that are more reliable and efficient
= |[ncorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Carnegie Mellon

Teaching staff

B |nstructors
= Prof. Gregory Kesden

_ , - We're glad to talk with
- PrOf B|” Nace - you, but p|ease send

% email or phone first
mTA's |

Dan Burrows

Timothy Douglas

Joel Feinstein

Jason Franklin e ...

Alex Gartrell '; | if Cyou Tove(C']
Ted Martin w! iy &3 honk();

Machong (Mike) Mu = R }
Hunter Pitelka

Josh Primero

Tom Tuttle

B Course Admin
= Cindy Chemsak (NSH 4303)

Carnegie Mellon

Textbooks

® Randal E. Bryant and David R. O’Hallaron,
= “Computer Systems: A Programmer’s Perspective”, Prentice Hall 2003
= http://csapp.cs.cmu.edu
= This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

® Brian Kernighan and Dennis Ritchie,
= “The C Programming Language, Second Edition”, Prentice Hall, 1988

Carnegie Mellon

Course Components

H Lectures

= Higher level concepts

B Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

¥ Labs (6)
= The heart of the course
= 2 or 3 weeks each
= Provide in-depth understanding of an aspect of systems
= Programming and measurement

B Exams (2 + final)

= Test your understanding of concepts & mathematical principles

Carnegie Mellon

Getting Help

® Class Web Page
= http://www.cs.cmu.edu/~213
= Copies of lectures, assignments, exams, solutions
= Clarifications to assignments

H Message Board
= http://autolab.cs.cmu.edu
= Clarifications to assignments, general discussion
= The only board your instructors will be monitoring (No Blackboard)

Carnegie Mellon

Getting Help

® Staff mailing list
15-213-staff@cs.cmu.edu
“The autolab server is down
“Who should I talk to about ..”

“This code {...}, which | don't want to post to the bboard, causes my
computer to melt into slag.”

1
!

B Teaching assistants
= | don't get “associativity”...
= Office hours, e-mail, by appointment
= Please send mail to 15-213-staff, not a randomly-selected TA

® Professors

= Office hours or appointment
= “Should I drop the class?” “A TA said ... but ...”

Getting Help: Office Hours

B Kesden: see course website
B Nace: Wednesdays, 2:00pm - 4:30pm

® TAs:
= Sundays — Thursdays, 6:00pm — 9:00pm
= \Wean Hall 5207 cluster

Carnegie Mellon

Carnegie Mellon

Policies: Assignments (Labs) And Exams

® Work groups

= You must work alone unless told otherwise in writing

® Handins
= Assignments due at 11:59pm on Tues or Thurs evening
= Electronic handins using Autolab (no exceptions!)

B Conflict exams, other irreducible conflicts
= OK, but must make PRIOR arrangements with Prof. Kesden / Nace
= Notifying us well ahead of time shows maturity and makes us like you
more (and thus to work harder to help you out of your problem)
B Appealing grades
= Within 7 days of completion of grading
= Following procedure described in syllabus
= Labs: Email to the staff mailing list
= Exams: Talk to Prof. Kesden / Nace

Facilities

H Labs will use the Intel Computer Systems Cluster

(aka “the fish machines”)
= 15 Pentium Xeon servers donated by Intel for CS 213
Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors
2 GB, 400 MHz DDR2 SDRAM memory
= Rack mounted in the 3rd floor Wean Hall machine room

= Your accounts are ready or nearing readiness

B Getting help with the cluster machines:

= See course Web page for login directions
= Please direct questions to your TA’s first

Carnegie Mellon

Carnegie Mellon

Timeliness

B Grace days
= 4 for the course
= Covers scheduling crunch, out-of-town trips, ilinesses, minor setbacks
= Save them until late in the term!
B Lateness penalties
= Once grace days used up, get penalized 15% / day
= Typically shut off all handins 2—3 days after due date
B Catastrophic events
= Major illness, death in family, ...
= Formulate a plan (with your academic advisor) to get back on track

B Advice

= Once you start running late, it’s really hard to catch up

Carnegie Mellon

Cheating

® What is cheating?
= Sharing code: by copying, retyping, looking at, or supplying a file
= Coaching: helping your friend to write a lab, line by line
= Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply, or from CS:APP website

® What is NOT cheating?
= Explaining how to use systems or tools
= Helping others with high-level design issues

B Penalty for cheating:

= Removal from course with failing grade

= Permanent mark on your record

B Detection of cheating:
= We do check
= Qur tools for doing this are much better than most cheaters think!

Carnegie Mellon

Other Rules of the Lecture Hall

® Laptops: permitted

B Electronic communications: forbidden

= No email, instant messaging, cell phone calls, etc

B Presence in lectures, recitations: voluntary, recommended

Carnegie Mellon

Policies: Grading

B Exams: weighted %, %, % (final)
B Labs: weighted according to effort (determined near the end)

B The lower of lab score and exam score is weighted 60%, the
higher 40%:
= Lab score:0<L<100,

Exam score: 0 < E <100
Total score: 0.6 min(L, E) + 0.4 max(L,E)

¥ Guaranteed:
= >90%: A
= >80%:B
= >70%: C

Programs and Data

® Topics
= Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
= Includes aspects of architecture and compilers

® Assighments
= L1 (datalab): Manipulating bits
= L2 (bomblab): Defusing a binary bomb
= |3 (buflab): Hacking a buffer bomb

Carnegie Mellon

Carnegie Mellon

The Memory Hierarchy

® Topics
= Memory technology, memory hierarchy, caches, disks, locality
= Includes aspects of architecture and OS

Carnegie Mellon

Performance

¥ Topics
= Co-optimization (control and data), measuring time on a computer
= Includes aspects of architecture, compilers, and OS

Carnegie Mellon

Exceptional Control Flow

® Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

= Includes aspects of compilers, OS, and architecture

® Assighments
= L4 (tshlab): Writing your own shell with job control

Carnegie Mellon

Virtual Memory

® Topics
= Virtual memory, address translation, dynamic storage allocation
= Includes aspects of architecture and OS

® Assighments

= L5 (malloclab): Writing your own malloc package
= Get a real feel for systems programming

Networking, and Concurrency

® Topics
= High level and low-level I/0O, network programming
= |nternet services, Web servers
= concurrency, concurrent server design, threads
|/O multiplexing with select
Includes aspects of networking, OS, and architecture

® Assignments
= |6 (proxylab): Writing your own Web proxy

Carnegie Mellon

Carnegie Mellon

Lab Rationale

B Each lab has a well-defined goal such as solving a puzzle or
winning a contest

¥ Doing the lab should result in new skills and concepts

B We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit
= Post intermediate results (anonymized) on Web page for glory!

Carnegie Mellon

Autolab Web Service

B Labs are provided by the Autolab system
= Autograding handin system developed in 2003 by Dave O’Hallaron
= Apache Web server + Perl CGl programs
= Beta tested Fall 2003, very stable by now

® With Autolab you can use your Web browser to:
Review lab notes, clarifications
Download the lab materials
Stream autoresults to a class status Web page as you work
Handin your code for autograding by the Autolab server

View the complete history of your code handins, autoresult submissions,
autograding reports, and instructor evaluations

View the class status page

Have Fun!

