15-213

Introduction to Computer Systems

With Your TA!

GDB,
Assembly Code, &
Bomblab

Recitation 2
Monday February 2nd, 2009

News

GDB

Assembly Code
Bomblab

Bomblab Example

Schedule

News
Datalab will be graded by this Thursday
— 1 week from final deadline
Scores will show up on Autolab.

— Questions? Complaints?

— Email the TA that graded your lab.
TA's will rotate

— So no one TA will grade two of your labs.

Labs will be hand graded and handed back in lecture

— PLEASE REVIEW OUR COMMENTS!!

Carnegie Mellon
School of Computer Science

Gnu DeBugger

Step through program execution

Examine values of program variables.

Trap system signals (such as SIGSEGYV)

Set breakpoints to halt execution at any point

Watch variables to see when they change.

(gdb) list

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main () {

5 int a,b,c;

0

7 a = 4;

8 b = 10;

9 c = a*b;

10

11 printf ("A is %d,
b 1s %d,
and ¢ 1s%d
\n",a,b,c);

12

13 return 0O;

14 }

GDB Example

(gdb) break simple.c:9

Breakpoint 1 at 0x804839%e: file simple.c,
line 9.

(gdb) run

Starting program: 15213/rec2/a.out
Breakpoint 1, main () at simple.c:9

9 c = a*b;
(gdb) print a
S1 = 4

(gdb) print b
$2 = 10

(gdb) print c
$3 = 134513642
(gdb) where

#0 main () at simple.c:9
(gdb) continue
Continuing.

A i1s 4, b is 10, and c 1is 40

Program exited normally.

Some GDB Commands
* run [arg! [arg2 [...]]]

— executes the program with specified arguments

* break [file.c:]line# | functionName | memAddr

— sets a break point

* breaks execution BEFORE executing the statement!!!!

* print varName | $register

— prints a variable or register's value.
* stepl

— step through one instruction in assembly

Some GDB Commands (cont)

* disas [function]

— show the disassembly of the current code (or the
function)

* continue

— continue program execution after stopping at a
breakpoint.

* 1nfo break | registers |

— shows information about breakpoints/registers/....

Assembly Code

x36 Assembly

* Variables ==> Registers

— %esp -> Stack Pointer

— %ebp -> Stack Base Pointer

— %eax -> Function Return Value
— %eip -> Instruction Pointer

— (a bunch of other ones)

x386_64 Assembly

* Variables ==> Registers

— %rsp -> Stack Pointer

— %orbp -> Stack Base Pointer

— %rax -> Function Return Value

— %orip -> Instruction Pointer

— %rdi, %rsi, %rdx, %rcx -> Function Arguments

— (and a bunch-bunch more)

Assembly Addressing

(R) ==> *(Reg (R))
* The memory at address stored in register R

SD(R) > * (Reg (R) +D)
* The memory at the address (R + (constant D))
* ex: $4(%eax) ==> *(%eax + 4)

D(Rb,Ri,S) ==>%*(Reg (Rb) T ReG RN
* Constant Displacement 'D'
* Base Register 'Rb’

* Index Register 'R1’
* Scale (1,2,4,8..)

Addressing Examples

$eax 0xb800
$ecx 0x10

$4 (%eax) 4 + 0xb800 0xb804
%eax, $ecx) 0xb800 + 0x10 0xb810
%$eax, secx, $4) O0xb800 + 4*0x10 0xb840
$4 (%eax, $Secx) 4 + 0xb800 + 0x10 0xb814

SOxFF0000 (%eax, $ecx, $4) 0xFF0000+0xb800+4*0x10 OXxFFb840

Arithmetic Operations

addl Src,Dest Dest = Dest + Src

subl Src,Dest Dest = Dest - Src

imull Src,Dest Dest = Dest * Src

sall Src,Dest Dest = Dest << Src Arithmetic
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest " Src

andl Src,Dest Dest = Dest & Src

orl Src,Dest Dest = Dest | Src

incl Dest Dest ++

decl Dest Dest --

negl Dest Dest = -Dest

notl Dest Dest = ~Dest

Examples

* C function with some simple math

* Lets examine the assembly code

— both unoptimized and optimized

* Step through this code with GDB

Bomblab

* Solve a series of stages by finding the password for a
function

* We give you a compiled binary

* You read the assembly code to figure out the
passwords

Bomblab Hints

* If it blows up, you're doing it wrong!

* Use GDB to step through the program, following
execution and watching what happens to variables

* Figure out what checks are made and how to pass
them

Bomblab Example

* Lets return to the example we had and try to get it to
return certain output values.

Final Thoughts

* There 1s LOTS of documentation for this stuff on the
internet.

* Become comfortable with GDB, you'll have to use it
a lot.

* Remember: Office Hours: Sun-Thur 5:30-9:30 1n
West Wing Cluster.

* 15-213-statf@cs.cmu.edu !!!

Carnegie Mellon
School of Computer Science

