Introduction to Computer Systems
15-213/18-243, spring 2009
3rd Lecture, Jan. 20th

Instructors:
Gregory Kesden and Markus Püschel
Autolab

- Attempts to impair the autolab system
- Graffiti, obscenities

→ Course failure (and other consequences)
Last Time: Bits & Bytes

- Bits, Bytes, Words
- Decimal, binary, hexadecimal representation
- Virtual memory space, addressing, byte ordering
- Boolean algebra
- Bit versus logical operations in C
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two’s Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- \textbf{C short 2 bytes long}

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

- \textbf{Sign Bit}
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

\[
x = 15213: \ 00111011 \ 01101101
\]
\[
y = -15213: \ 11000100 \ 10010011
\]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 \ 1</td>
<td>1 \ 1</td>
</tr>
<tr>
<td>2</td>
<td>0 \ 0</td>
<td>1 \ 2</td>
</tr>
<tr>
<td>4</td>
<td>1 \ 4</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>8</td>
<td>1 \ 8</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>16</td>
<td>0 \ 0</td>
<td>1 \ 16</td>
</tr>
<tr>
<td>32</td>
<td>1 \ 32</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>64</td>
<td>1 \ 64</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>128</td>
<td>0 \ 0</td>
<td>1 \ 128</td>
</tr>
<tr>
<td>256</td>
<td>1 \ 256</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>512</td>
<td>1 \ 512</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>1024</td>
<td>0 \ 0</td>
<td>1 \ 1024</td>
</tr>
<tr>
<td>2048</td>
<td>1 \ 2048</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>4096</td>
<td>1 \ 4096</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>8192</td>
<td>1 \ 8192</td>
<td>0 \ 0</td>
</tr>
<tr>
<td>16384</td>
<td>0 \ 0</td>
<td>1 \ 16384</td>
</tr>
<tr>
<td>-32768</td>
<td>0 \ 0</td>
<td>1 \ -32768</td>
</tr>
</tbody>
</table>

Sum

\[
\text{Sum} = 15213: \ 01110110 \ 01100001
\]
\[
\text{Sum} = -15213: \ 10010011 \ 11000010
\]
Numeric Ranges

Unsigned Values
- $UMin = 0$
 - 000...0
- $UMax = 2^w - 1$
 - 111...1

Two’s Complement Values
- $TMin = -2^{w-1}$
 - 100...0
- $TMax = 2^{w-1} - 1$
 - 011...1

Other Values
- Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 \times Tmax + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $\text{U2B}(x) = \text{B2U}^{-1}(x)$
 - Bit pattern for unsigned integer
 - $\text{T2B}(x) = \text{B2T}^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Mapping Between Signed & Unsigned

- **Two’s Complement**
 - $x \xrightarrow{T2B} X \xrightarrow{B2U} ux$
 - Maintain Same Bit Pattern

- **Unsigned**
 - $ux \xrightarrow{U2B} X \xrightarrow{B2T} x$
 - Maintain Same Bit Pattern

- **Mappings between unsigned and two’s complement numbers:**
 - keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

-16 = +16
Relation between Signed & Unsigned

Two’s Complement

\[x \rightarrow \text{T2B} \rightarrow \text{B2U} \rightarrow ux \]

Maintain Same Bit Pattern

- Large negative weight becomes large positive weight
- \[ux = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \]
Conversion Visualized

- **2’s Comp. → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

Unsigned Range

- T_{Max}
- U_{Max}
- $U_{Max} - 1$
- $T_{Max} + 1$
- T_{Max}
- 0
- -1
- -2
- T_{Min}
- 0
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - \(0U, 4294967259U \)

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```
    tx = ux;
    uy = ty;
    ```
Casting Surprises

Expression Evaluation
- If mix unsigned and signed in single expression, *signed values implicitly cast to unsigned*
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: \(TMIN = -2,147,483,648 \), \(TMAX = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Similar to code found in FreeBSD’s implementation of getpeername

There are legions of smart people trying to find vulnerabilities in programs
Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Sign Extension

- **Task:**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- **Rule:**
 - Make k copies of sign bit:
 - $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$

![Diagram](image)
Sign Extension Example

```c
short int x =  15213;
int      ix = (int) x;
short int y = -15213;
int      iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, Truncating: Basic Rules

- **Expanding (e.g., short int to int)**
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- **Truncating (e.g., unsigned to unsigned short)**
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Negation: Complement & Increment

- **Claim:** Following holds for 2’s Complement
 \[\neg x + 1 = -x \]

- **Complement**
 - **Observation:** \[\neg x + x = 1111\ldots111 = -1 \]

 \[
 \begin{array}{c}
 \times \quad 10011101 \\
 + \quad 01100010 \\
 \hline
 -1 \quad 11111111 \quad 1
 \end{array}
 \]

- **Complete Proof?**
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x+1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0+1$</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

$\text{UAdd}_w(u, v)$

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

 $s = \text{UAdd}_w(u, v) = u + v \mod 2^w$

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

- **Wraps Around**
 - If true sum $\geq 2^w$
 - At most once

![Diagram showing true sum, modular sum, and overflow](image-url)

- $UAdd_4(u, v)$

True Sum

2^{w+1}

2^w

0

Modular Sum
Mathematical Properties

- **Modular Addition Forms an Abelian Group**
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u \]
 - **Every element has additive inverse**
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[u \]

\[+ \]

\[v \]

\[u + v \]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[\text{TAdd}_w(u, v) \]

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```

 Will give \(s == t \)
TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

- **True Sum**

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 111…1</td>
<td>011…1</td>
</tr>
<tr>
<td>0 100…0</td>
<td>000…0</td>
</tr>
<tr>
<td>0 000…0</td>
<td>100…0</td>
</tr>
<tr>
<td>1 011…1</td>
<td>–2$^{w-1}$–1</td>
</tr>
<tr>
<td>1 000…0</td>
<td>–2w</td>
</tr>
</tbody>
</table>

- **Overflow Detection**
 - PosOver
 - NegOver
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $\text{TAdd}_w(u, v) = \text{U2T}(\text{UAdd}_w(\text{T2U}(u), \text{T2U}(v)))$
 - Since both have identical bit patterns

- Two’s Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$\text{TComp}_w(u) = \begin{cases}
-u & u \neq \text{TMin}_w \\
\text{TMin}_w & u = \text{TMin}_w
\end{cases}$$
Multiplication

- Computing Exact Product of \(w \)-bit numbers \(x, y \)
 - Either signed or unsigned

- Ranges
 - Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
 - Two’s complement min: \(x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \)
 - Up to \(2w-1 \) bits
 - Two’s complement max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2w \) bits, but only for \((TMin_w)^2 \)

- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**

\[
UMult_w(u, v) = u \cdot v \mod 2^w
\]
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```c
malloc(ele_cnt * ele_size)
```
void* copy_elements(void* ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void* result = malloc(ele_cnt * ele_size);
 if (result == NULL) /* malloc failed */
 return NULL;
 void* next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

- **What if:**
 - `ele_cnt` = $2^{20} + 1$
 - `ele_size` = 4096 = 2^{12}
 - Allocation = ??

- **How can I make this function secure?**
Signed Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- \(u \ll k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

True Product: \(w+k \) bits

Discard \(k \) bits: \(w \) bits

Examples
- \(u \ll 3 \) \(\equiv \) \(u \times 8 \)
- \(u \ll 5 - u \ll 3 \) \(\equiv \) \(u \times 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

Operands:

$$\begin{array}{c|c}
\text{Operand} & \text{Binary} \\
\hline
x & \cdots \cdots \\
2^k & 0 \cdots 010 \cdots 00 \\
\hline
\end{array}$$

Division:

$$x / 2^k$$

Result: RoundDown($x / 2^k$)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want $\left\lceil \frac{x}{2^k} \right\rceil$ (Round Toward 0)
 - Compute as $\left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor$
 - In C: $(x + (1 << k) - 1) >> k$
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

<table>
<thead>
<tr>
<th>u</th>
<th>\cdots</th>
<th>0</th>
<th>\cdots</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+2^k - 1$</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
<td>1</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Divisor:

<table>
<thead>
<tr>
<th>l</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u / 2^k$</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary Point

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: \(x \)

\[
\begin{array}{c}
1 \cdots \underbrace{\cdots}_{k} \\
0 \cdots 0 0 1 \cdots 1 1 \\
1 \cdots \underbrace{\cdots}_{k-1}
\end{array}
\]

\[
\underbrace{1 \cdots \underbrace{\cdots}_{k-1}}_{1 \cdots 0 1 1 \cdots}
\]

Divisor: \(\frac{x}{2^k} \)

\[
\begin{array}{c}
0 \cdots 0 1 0 \cdots 0 0 \\
1 \cdots 1 1 1 \cdots \\
\end{array}
\]

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```asm
testl %eax, %eax
js  L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp L3
```

Explanation

```asm
if x < 0
    x += 7;
# Arithmetic shift
    return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as `>>`
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Arithmetic: Basic Rules

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- **Unsigned Multiplication with Addition Forms**
 - **Commutative Ring**
 - Addition is commutative group
 - Closed under multiplication
 - \(0 \leq \text{UMult}_w(u, v) \leq 2^w - 1\)
 - Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
 - Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

■ Isomorphic Algebras
 ▪ Unsigned multiplication and addition
 ▪ Truncating to \(w \) bits
 ▪ Two’s complement multiplication and addition
 ▪ Truncating to \(w \) bits

■ Both Form Rings
 ▪ Isomorphic to ring of integers mod \(2^w \)

■ Comparison to (Mathematical) Integer Arithmetic
 ▪ Both are rings
 ▪ Integers obey ordering properties, e.g.,
 \[
 u > 0 \implies u + v > v \\
 u > 0, v > 0 \implies u \cdot v > 0
 \]
 ▪ These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{Max} + 1 = T_{Min} \\
 15213 \times 30426 = -10030
 \] (16-bit words)
Why Should I Use Unsigned?

- **Don’t Use Just Because Number Nonnegative**
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
        ...
    ```

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension
Integer C Puzzles

- \(x < 0 \) \(\Rightarrow ((x*2) < 0) \)
- \(ux >= 0 \)
- \(x & 7 == 7 \) \(\Rightarrow (\text{x<30}) < 0 \)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow -x < -y \)
- \(x * x >= 0 \)
- \(x > 0 && y > 0 \) \(\Rightarrow x + y > 0 \)
- \(x >= 0 \)
- \(x <= 0 \) \(\Rightarrow -x <= 0 \)
- \(x <= 0 \)
- \((x|x)\gg31 == -1 \)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x & (x-1) != 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```