
GDB Introduction
15-213 Spring 2008

This document should serve as a useful introduction to debugging with GDB. We've put together a simple
bomb with a single phase and provided some of the source code, below:

/* tiny bomb! this is a much smaller, simpler bomb for demonstrating

 * gdb and basic assembly language */

#include <stdio.h>

#include <stdlib.h>

#include "bomb_support.h"

#include "phase_support.h"

int main(int argc, char *argv[])

{

 /* start reading from standard in */

 FILE *infile;

 infile = stdin;

 char *input = read_line(infile);

 /* haHA! this will cut the class size in half, leaving more

 * time for my evil research! */

 if (!phase_n(input))

 fail_213_student();

 else

 phase_n_defused();

 exit(0);

}

This code is similar in spirit to the much more complicated multi-phase bombs you are working on for the
second lab. The main function reads in an input string from STDIN and passes it to the phase, which validates
it in some way, returning 1 on success and 0 on failure.

This small snippet of C is very valuable: the overall structure of the code is much clearer than it would be if we
had to work this logic out by hand using the debugger.

Let's fire up our tools and get started:

By using objdump, we can produce a disassembly of the binary Doctor Evil left us. In other words, we've gone
from the original C code (that we don't have access to) down to an x86 binary (which has absolutely zero
human readable information), and then back to x86 assembly (which we can at least attempt to read). It is very
important to realize that this is a destructive process: we lose all kinds of information about the original
program structure, like variable names, function names, statement ordering, and so on. A major component of
this lab is to learn how to take such garbled code and slowly piece together the C code that originally produced
it.

Also note that you have recieved a binary compiled with most of the debugging flags turned on and most of the
optimizations turned off, giving you a tremendous advantage. In an optimized binary, it is actually very
difficult even to do things like group a particular series of instructions into a single function, or identify which
areas of memory are responsible for storing certain pieces of state.

Looking at our C listing again, we should immediately be concerned about the fail_213() function. It looks like
Doctor Evil is playing for keeps: if that function ever manages to run, the consequences could be dire. We're
going to have to find some way to tinker with this bomb without ever running that function. First though, let's
take a look at the disassembly we just produced:

Let's be careful. If we just try and run this bomb in an uncontrolled environment, we won't have any way of
stopping this function from running. Fortunately, GDB has an incredibly useful feature called "breakpoints."
With a breakpoint, we can execute the bomb normally until it reaches a certain instruction (in this case, the first
instruction of fail_213_student) and stop execution right there. We could then examine the state of the process,
call another function, look at the contents of memory, etc. In this case, though, we're going to be most
interested in stopping execution so as to not trigger the bomb. See below for a demonstration of setting a
breakpoint:

As you can see, when we run the bomb with a breakpoint set, execution stops before the first instruction of
fail_213_student runs, saving us from having to give an embarrasing explanation to our friends.

Don't forget that whenever you quit GDB, all your breakpoints are cleared! Be sure to set up your breakpoints
whenever you start a new debugging session.

Now that we can work on the bomb without fear, let's see if we can discover what phase_n() is doing by
looking at the dissassembly:

This looks pretty short and simple: we're moving some hex constant into a register, calling a function, and
checking its return value. Without knowing the function prototypes for anything besides phase_n, we can still
put together a rough outline of the function body. Your TA will go over the process of filling in the blanks
below:

int phase_n(char *foo)

{

 int x = strings_not_equal(,)

 if (x ==)

 return 0;

 else

 return 1;

}

To fill in these blanks, let's start by figuring out the function arguments to strings_not_equal(). We know that
the hex constant in the first line is an argument, because %esi is the register that stores the second function
argument (look at your x86_64 handouts!). Trick question: why don't we see a line that copies something into
%edi, the register that stores the first argument?

If strings_not_equal is comparing two strings (as its name suggests), we can probably assume that the hex
constant being stored in %esi is some kind of pointer, probably a char *. Let's dig into it with GDB:

This isn't very helpful, but we've still learned something: the data stored at that address is intialized even
before the program starts, so the pointer can't point to anything on the stack or the heap. An even more
accurate technique for identifying random bytes in memory is to familiarize yourself with the x86_64 memory
image layout. The addresses of various segments are well-defined and useful to know.

Anyways, let's make a wild guess and assume that the second argument to strings_not_equal is a char *, and
that the data we're looking at is a C-style string. We can ask GDB to treat it that way by changing the flags we
pass to the examine command:

Now we're getting somewhere: it looks like phase_n is comparing a hard-coded string ("ilove213") to another
string, and returning 1 or 0 based on the result of that comparison. Notice from the addresses that we're looking
at the same addresses, just with a different format string. GDB has no way of knowing ahead of time that a
particular series of bytes is a C-string, or an array of integers, or a floating point number. It is up to you to
make those deductions!

Now that we've identified this address as a pointer to a C string, let's make another leap and assume that the
two strings phase_n is passing to strings_not_equal need to be equal. If we make one final guess and assume
that phase_n is expecting it's argument to be "ilove213"...

Success! Notice that we didn't have to reverse every last line of the dissassembly: with a few clever guesses
and only a small amount of work, we solved the phase. For this lab, it will be important to not spend time
reconstructing relatively straightforward-sounding functions, like strings_not_equal. Focus on the code for the
phases themselves, and always keep a picture in your head of your best guess as to what the original C code
looked like. Good luck!

For your reference, the original phase source code is reproduced below. Make sure you see how this source
produced the assembly we examined earlier:

#include "phase_support.h"

int phase_n(char *input)

{

 if (strings_not_equal(input, "ilove213"))

 return 0;

 else

 return 1;

}

void fail_213_student()

{

 printf("WAHAHAHAHA! you failed; better luck next semester!\n");

 printf("(please learn about breakpoints)\n");

}

void phase_n_defused()

{

 printf("good work! it looks like you're going to stick around
afterall!\n");

}

