Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2" Lecture, May 23, 2018

Instructors:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Waitlist questions

m 15-213: Amy Weis alweis@andrew.cmu.edu

m 18-213: Zara Collier (zcollier@andrew.cmu.edu)
m 15-513: Amy Weis alweis@andrew.cmu.edu

m Please don’t contact the instructors with waitlist
qguestions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

mailto:alweis@andrew.cmu.edu
mailto:alweis@andrew.cmu.edu

Carnegie Mellon

Bootcamp

m Linux basics
m Git basics

m Things like:
= How to ssh to the shark machines from windows or linux
= How to setup a directory on afs with the right permissions

= How to initialize a directory for git

The basics of using git as you work on the assignment

Basic linux tools like: tar, make, gcc, ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

First Assignment: Data Lab

m Datalab is out this afternoon

s Due: Thursday, 5/31 at 11:59pm

m Absolute last time to turn in: Saturday, 6/2 at 11:59pm

s Go to GitHub/Autolab soon and read the handout carefully
m Start early

m Don’t be afraid to ask for help
= Piazza

= Office hours

m Based on lectures 2,3 and 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Everything is bits

m EachbitisOor1l

Carnegie Mellon

s By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)

= ... andrepresent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation

= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

+— () —>

1.1V —
0.9V —

«— | ———»

0.2V —
/——W

0.0V —

/

7\

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

< >

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213, as 11101101101101,
= Represent 1.20_, as 1.0011001100110011[0011]...2
* Represent 1.5213 X 10* a5 1.1101101101101, X 2*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Encoding Byte Values 8

o
o
o
o
o

m Byte = 8 bits
= Binary 00000000, to 11111111,

= Decimal: O10 to 25510

= Hexadecimal OO16 to FF16

« Base 16 number representation
» Use characters ‘0’ to ‘9’ and ‘A’ to ‘F

1001

= Write FA1D37B16 in Cas 1010
— OxFA1D37B 1100

— Oxfald37b 1101

HEOQW|[olo|Noa|ju|hlw|h|Rk|o
RIR(RFR|RR(E
e lwlolklole|®@ N |u|e|win R
|_I
o
|_I
|_I

15213: 0111 IOill 01fo 1]101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century

= Algebraic representation of logic
« Encode “True” as 1 and “False” as 0

And Or
=« A&B = 1 when both A=1 and B=1 =« A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0(O0 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A"B = 1 when either A=1 or B=1, but not both
~ O 1
Of1 O(0 1
110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors

= Qperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

L aj=1ifj €A

- 01101001{0,3,5,6}
= 76543210

- 01010101{0,2,4,6}

« 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}

= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Bit-Level Operations in C

>
0‘|~ 66\6\.\(\06
m Operations &, |, ~, ”* AvailableinC ‘g\ ? ‘:’000
= Apply to any “integral” data type 1 [1 | o001
= long, int, short, char, unsigned 2 |2 10010
3 3 [0011
= View arguments as bit vectors 4 |4 | 0100
)) i 5 5 10101
= Arguments applied bit-wise 6 16 | 0110
m Examples (Char data type) 77 p oLl
8 8 1000
= ~0x41 — 9 [9 [1001
A [10] 1010
B |11 1011
= ~0x00 — C 12] 1100
D |13
E |14
F |15

= 0x69 & 0x55 —

= 0x69 | 0x55 —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Bit-Level Operations in C

+
. . . e AC
m Operations &, |, ~, " Available in C R Q0
= Apply to any “integral” data type
= long, int, short, char, unsigned

o
o
o
o
o

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 — OxBE
. ~0100 0001, — 1011 1110,
= ~0x00 — OxFF
- ~0000 0000, — 1111 1111,
= 0x69 & 0x55 — 0x41
- 0110 1001, & 0101 0101, — 0100 0001,
= 0x69 | 0x55 — 0x7D
. 0110 1001, 0101 0101, — 0111 1101,

H(EH|O QW |vlo|<waus|lwhd|Fo

RIRRRR|P
alelmlollole|eNlo ||k |wib |-
|_I
o
|_I
|_I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators

= Logic Operation],
View 0 as “Fals
Anythi
Alwa
S Watch out for && vs. & (and || vs. |)...

e one of the more common oopsies in

YR C programming
10x00 —
110x41— 0x01

0x69 && 0x55 — 0x01
0x69 || 0x55 — 0x01
p && *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Shift Operations

m Left Shift: x << y
= Shift bit-vector x left y positions
— Throw away extra bits on left
= Fill with 0’s on right
= Right Shift: x >> y
= Shift bit-vector x right y positions
« Throw away extra bits on right
= Logical shift
« Fill with 0’s on left
= Arithmetic shift
» Replicate most significant bit on left

m Undefined Behavior

= Shift amount < 0 or 2 word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log. >> 2

00101000

Arith. >> 2

11101000

17

Carnegie Mellon

Today: Bits, Bytes, and Integers

m
m
m Integers

= Representation: unsigned and signed
[
m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1) w-2)
B2UX) = Y x-2 B2T(X) = —Xu1-2""+ > x-2
i=0 i=0
short int x = 15213; ‘\\\\\\\

short int y = -15213; Sign Bit

m Cshort 2 bytes long

Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
* For 2’s complement, most significant bit indicates sign

= 0 for nonnegative
» 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Two-complement: Simple Example

.. HINEEE . .
O 1 0 1 O

-10 =..... -16+4+2 = -10
1 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Numeric Ranges

= Unsigned Values = Two’s Complement Values

UMin =0 = TMin = —2"1
000...0 100...0
[| = w_
UMax 27 -1 = TMax = 2%1-1
111...1 011. 1
= Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00OOOOOOO
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |[TMin| = TMax+1 * Hinclude <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax= 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 =
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

» Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U}(x)
= Bit pattern for unsigned
integer
= T2B(x) = B2T(x)

» Bit pattern for two’s comp
integer

24

Carnegie Mellon

Today: Bits, Bytes, and Integers

u
u
m Integers

= Conversion, casting
=

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Mapping Between Sighed & Unsigned

Two’s Complement —1 Unsigned
X | T2B " L-:,-L > LX

Maintain Same Bit Pattern

Two’s Complement

Unsigned o2t
U > "7 |—> > X
; s LB2T

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Mapping Sighed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — —_— 5
0110 6 6
0111 7 “ - 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Mapping Sighed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <—> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Relation between Sighed & Unsigned

Two’s Complement — Unsigned
X —>| T2B |—> UL > X
X V)
Maintain Same Bit Pattern
w—1 0
u H H +H so o0 HH +H
% -1 H+H oo 0 HH +

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Conversion Visualized

m 2’s Comp. — Unsigned

= QOrdering Inversion UMax
UMax -1

= Negative — Big Positive

_ / TMax +1 | unsigned
TMax ® >® T\Max Range

2’s Complement

® >0
Range _2 .J / 0 B
—2

_ TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

30

Signed vs. Unsighed in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;,
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= |mplicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u);

uy = ty; uy = fun(tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647
= Constant, Constant, Relation Evaluation

0O ou == unsigned

-1 0 < signed

-1 0oU > unsigned

2147483647-2147483647-1 > signed

2147483647U -214748364%1 unsigned

-1 -2 > signed

(unsigned)-1-2 > unsigned

2147483647 2147483648d unsigned

2147483647 (int) 21474836484 signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Unsigned vs. Signed: Easy to Make Mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (1 = CNT; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Summary
Casting Signed < Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2"

m Expression containing signed and unsigned int

= intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Today: Bits, Bytes, and Integers

i
i
m Integers

= Expanding, truncating
i

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
= Rule:

= Make k copies of sign bit:

| | ,=
X Xqrmemr Xy g0 X 10 X o reer Xg
L |

k copies of MSB < w >

X o000
vy Yyvy

X o000 o000

/

<€ k > <€ . >

Bryant and O’Hallaron, Computer Systems: A Programmer’sF ctive, Third Edition 36

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 1 0 1 0 -10 = 1 1 1 0
-3 1%6 8 4 2 1 -3 16 8 4 2 1
10 = O 1 0 1 0 -10 = 1 % 1 0 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Larger Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) vy’

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 oO1101101
'y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m Cautomatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Truncation

m Task:
= Given k+w-bit signed or unsigned integer X

= Convert it to w-bit integer X" with same value for “small enough” X
m Rule:
= Drop top k bits:

= X' = X 0 X e X,

-« k > <€ . >

X ') o0 0
Yvy Yvy

X! ()
<€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
* Unsigned: zeros added
= Signed: sign extension

= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
* Signed: similar to mod

* For small numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

m Your job is to develop the driver software.

printf (“$d\n”, getValue())

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

job_is to develop the driver software.

printf (“$d\n”, getValue())

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Lets run some tests

printf (“$d\n”, getValue());

m 50652
m 1500
m 9692
m 26076
m 17884
m 42460
m 34268
m 50652

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Lets run some tests

int x=getValue(); printf (“%d %08x\n”,x, Xx);

m 50652 0000c5dc
m 1500 000005dc
m 9692 000025dc
m 26076 000065dc
m 17884 000045dc
m 42460 0000ab5dc
m 34268 000085dc
m 50652 0000c5dc

Those darn
engineers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Only care about least significant 12 bits

int x=getValue() ;
x=(x & Ox0fff) ;
printf (“%d\n”,x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Only care about least significant 12 bits

int x=getValue() ;
x=x (&0x0£f£ff) ;
printf (“%d\n”,x) ;

‘ AY3LIVE d e:

printf (“%$x\n”, x);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Must signh extend

int x=getValue() ;
x=(x&0x007£ff) | (x&0x0800?0xE££££000:0) ;
printf (“%d\n”, x) ;

There is a better way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Because you graduated from 213

int x=getValue() ;
x=(x&0x007£ff) | (x&0x0800?0x£££££000:0) ;
printf (“%d\n”, x) ;

AY3LLve B0 AY3LIvE d@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Lets be really thorough

int x=getValue() ;
x=(x&0x00£f£ff) | (x&0x08007?0xf1
printf (“%d\n”,x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations
m Integers
= Representation: unsigned and signed
= Conversion, casting

= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

