
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers – Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2nd Lecture, May 23, 2018

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Waitlist questions

⬛ 15-213: Amy Weis alweis@andrew.cmu.edu

⬛ 18-213: Zara Collier (zcollier@andrew.cmu.edu)

⬛ 15-513: Amy Weis alweis@andrew.cmu.edu

⬛ Please don’t contact the instructors with waitlist
questions.

mailto:alweis@andrew.cmu.edu
mailto:alweis@andrew.cmu.edu

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bootcamp

⬛ Linux basics

⬛ Git basics

⬛ Things like:
▪ How to ssh to the shark machines from windows or linux

▪ How to setup a directory on afs with the right permissions

▪ How to initialize a directory for git

▪ The basics of using git as you work on the assignment

▪ Basic linux tools like: tar, make, gcc, …

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First Assignment: Data Lab

⬛ Datalab is out this afternoon

⬛ Due: Thursday, 5/31 at 11:59pm

⬛ Absolute last time to turn in: Saturday, 6/2 at 11:59pm

⬛ Go to GitHub/Autolab soon and read the handout carefully

⬛ Start early

⬛ Don’t be afraid to ask for help

▪ Piazza

▪ Office hours

⬛ Based on lectures 2, 3 and 4

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

⬛ Representations in memory, pointers, strings

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits

⬛ Each bit is 0 or 1

⬛ By encoding/interpreting sets of bits in various ways
▪ Computers determine what to do (instructions)

▪ … and represent and manipulate numbers, sets, strings, etc…

⬛ Why bits? Electronic Implementation
▪ Easy to store with bistable elements

▪ Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in binary

⬛ Base 2 Number Representation
▪ Represent 15213

10
 as 11101101101101

2

▪ Represent 1.20
10

 as 1.0011001100110011[0011]…
2

▪ Represent 1.5213 X 104 as 1.1101101101101
2
 X 213

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

⬛ Byte = 8 bits
▪ Binary 00000000

2
 to 11111111

2

▪ Decimal: 0
10

 to 255
10

▪ Hexadecimal 00
16

 to FF
16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

▪ Write FA1D37B
16

 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

⬛ Representations in memory, pointers, strings

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

⬛ Developed by George Boole in 19th Century
▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And
■ A&B = 1 when both A=1 and B=1

Or
■ A|B = 1 when either A=1 or B=1

Not
■ ~A = 1 when A=0

Exclusive-Or (Xor)
■ A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

⬛ Operate on Bit Vectors
▪ Operations applied bitwise

⬛ All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

⬛ Representation
▪ Width w bit vector represents subsets of {0, …, w–1}

▪ a
j
 = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

⬛ Operations
▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned
▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF
▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41
▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D
▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned
▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF
▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41
▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D
▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned
▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~0100 00012 → 1011 11102

▪ ~0x00 → 0xFF
▪ ~0000 00002 → 1111 11112

▪ 0x69 & 0x55 → 0x41
▪ 0110 10012 & 0101 01012 → 0100 00012

▪ 0x69 | 0x55 → 0x7D
▪ 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

⬛ Contrast to Bit-Level Operators
▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

⬛ Examples (char data type)
▪ !0x41 → 0x00
▪ !0x00 → 0x01
▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01
▪ 0x69 || 0x55 → 0x01
▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

⬛ Left Shift: x << y
▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

⬛ Right Shift: x >> y
▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

⬛ Undefined Behavior
▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

⬛ Representations in memory, pointers, strings

⬛ Summary

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

 short int x = 15213;
 short int y = -15213;

⬛ C short 2 bytes long

⬛ Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

Unsigned Two’s Complement

Sign Bit

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
⬛ Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

⬛ Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

▪ Minus 1

111…1

Values for W = 16

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

⬛ Observations
▪ |TMin | = TMax + 1

▪ Asymmetric range

▪ UMax= 2 * TMax + 1

⬛ C Programming
▪ #include <limits.h>

▪ Declares constants, e.g.,

▪ ULONG_MAX

▪ LONG_MAX

▪ LONG_MIN

▪ Values platform specific

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
⬛ Equivalence

▪ Same encodings for nonnegative
values

⬛ Uniqueness
▪ Every bit pattern represents

unique integer value

▪ Each representable integer has
unique bit encoding

⬛ ⇒ Can Invert Mappings
▪ U2B(x) = B2U-1(x)

▪ Bit pattern for unsigned
integer

▪ T2B(x) = B2T-1(x)

▪ Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

⬛ Representations in memory, pointers, strings

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B
B2
U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T
U2
B

B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

u
x

x
X

⬛ Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2
T

T2
U

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/
-
16

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •
- + + + + +• • •

u
xx

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B
B2
U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
⬛ 2’s Comp. → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C
⬛ Constants

▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

⬛ Casting
▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

 2147483647 2147483648U < unsigned

 2147483647 (int) 2147483648U > signed

Casting Surprises
⬛ Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

⬛ Constant
1

Constant
2

Relation Evaluation
0 0U

-1 0

-1 0U

2147483647-2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1-2

 2147483647 2147483648U

 2147483647 (int) 2147483648U

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned vs. Signed: Easy to Make Mistakes

unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

▪ Can be very subtle

#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules

⬛ Bit pattern is maintained

⬛ But reinterpreted

⬛ Can have unexpected effects: adding or subtracting 2w

⬛ Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

⬛ Representations in memory, pointers, strings

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension
⬛ Task:

▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

⬛ Rule:
▪ Make k copies of sign bit:

▪ X ′ = x
w–1

,…, x
w–1

, x
w–1

, x
w–2

,…, x
0

k copies of MSB

• • •X

X
′

• • • • • •

• • •

w

wk

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 1 1 1 0

-32 16 8 4 2 1

1 1 1 0 1 0-10 =

Positive number Negative number

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

⬛ Converting from smaller to larger integer data type

⬛ C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation
⬛ Task:

▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

⬛ Rule:
▪ Drop top k bits:

▪ X ′ = x
w–1

, x
w–2

,…, x
0

• • •

• • •X ′
w

X • • • • • •
wk

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

 6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

⬛ Expanding (e.g., short int to int)
▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

⬛ Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small numbers yields expected behavior

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example

⬛ Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

⬛ Your job is to develop the driver software.

1500

printf(“%d\n”, getValue());

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example

⬛ Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

⬛ Your job is to develop the driver software.

26076

printf(“%d\n”, getValue());

wtf?

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

⬛ 50652 0000c5dc
⬛ 1500 000005dc
⬛ 9692 000025dc
⬛ 26076 000065dc
⬛ 17884 000045dc
⬛ 42460 0000a5dc
⬛ 34268 000085dc
⬛ 50652 0000c5dc

printf(“%d\n”, getValue());

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

⬛ 50652 0000c5dc
⬛ 1500 000005dc
⬛ 9692 000025dc
⬛ 26076 000065dc
⬛ 17884 000045dc
⬛ 42460 0000a5dc
⬛ 34268 000085dc
⬛ 50652 0000c5dc

int x=getValue(); printf(“%d %08x\n”,x, x);

Those darn
engineers!

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

1500

int x=getValue();
x=(x & 0x0fff);
printf(“%d\n”,x);

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

2596

int x=getValue();
x=x(&0x0fff);
printf(“%d\n”,x);

printf(“%x\n”, x);

a24

hmm?

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Must sign extend

-1500

int x=getValue();
x=(x&0x007ff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

There is a better way.

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Because you graduated from 213

0

int x=getValue();
x=(x&0x007ff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

huh?

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets be really thorough

int x=getValue();
x=(x&0x00fff)|(x&0x0800?0xfffff000:0);
printf(“%d\n”,x);

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

⬛ Representations in memory, pointers, strings

⬛ Summary

