Course OverReview

15-213: Introduction to Computer Systems 26th Lecture, August 2, 2016

Instructor:

Brian Railing

The course that gives CMU its "Zip"!

Overview

- Course theme
- Five realities
- How the course fits into the CS/ECE curriculum
- Academic integrity

Course Theme:

Abstraction Is Good But Don't Forget Reality

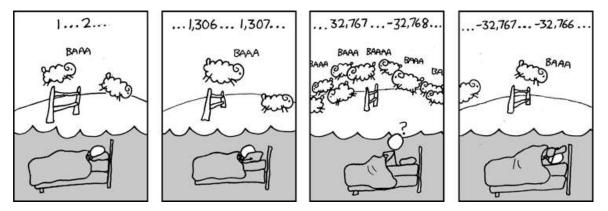
Most CS and CE courses emphasize abstraction

- Abstract data types
- Asymptotic analysis

These abstractions have limits

- Especially in the presence of bugs
- Need to understand details of underlying implementations

Useful outcomes from taking 213


- Become more effective programmers
 - Able to find and eliminate bugs efficiently
 - Able to understand and tune for program performance
- Prepare for later "systems" classes in CS & ECE
 - Compilers, Operating Systems, Networks, Computer Architecture, Embedded Systems, Storage Systems, etc.

Great Reality #1:

Ints are not Integers, Floats are not Reals

Example 1: Is $x^2 \ge 0$?

Float's: Yes!

Int's:

- 40000 * 40000 --> 160000000
- 50000 * 50000 --> ?

Example 2: Is (x + y) + z = x + (y + z)?

Unsigned & Signed Int's: Yes!

Float's:

- (1e20 + -1e20) + 3.14 --> 3.14
- 1e20 + (-1e20 + 3.14) --> ??

Computer Arithmetic

Does not generate random values

Arithmetic operations have important mathematical properties

Cannot assume all "usual" mathematical properties

- Due to finiteness of representations
- Integer operations satisfy "ring" properties
 - Commutativity, associativity, distributivity
- Floating point operations satisfy "ordering" properties
 - Monotonicity, values of signs

Observation

- Need to understand which abstractions apply in which contexts
- Important issues for compiler writers and serious application programmers

Great Reality #2:

You've Got to Know Assembly

- Chances are, you'll never write programs in assembly
 - Compilers are much better & more patient than you are
- But: Understanding assembly is key to machine-level execution model
 - Behavior of programs in presence of bugs
 - High-level language models break down
 - Tuning program performance
 - Understand optimizations done / not done by the compiler
 - Understanding sources of program inefficiency
 - Implementing system software
 - Compiler has machine code as target
 - Operating systems must manage process state
 - Creating / fighting malware
 - x86 assembly is the language of choice!

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

Memory is not unbounded

- It must be allocated and managed
- Many applications are memory dominated

Memory referencing bugs especially pernicious

Effects are distant in both time and space

Memory performance is not uniform

- Cache and virtual memory effects can greatly affect program performance
- Adapting program to characteristics of memory system can lead to major speed improvements

Memory Referencing Errors

C and C++ do not provide any memory protection

- Out of bounds array references
- Invalid pointer values
- Abuses of malloc/free

Can lead to nasty bugs

- Whether or not bug has any effect depends on system and compiler
- Action at a distance
 - Corrupted object logically unrelated to one being accessed
 - Effect of bug may be first observed long after it is generated

How can I deal with this?

- Program in Java, Ruby, Python, ML, ...
- Understand what possible interactions may occur
- Use or develop tools to detect referencing errors (e.g. Valgrind)

Great Reality #4: There's more to performance than asymptotic complexity

Constant factors matter too!

And even exact op count does not predict performance

- Easily see 10:1 performance range depending on how code written
- Must optimize at multiple levels: algorithm, data representations, procedures, and loops

Must understand system to optimize performance

- How programs compiled and executed
- How to measure program performance and identify bottlenecks
- How to improve performance without destroying code modularity and generality

Great Reality #5:

Computers do more than execute programs

They need to get data in and out

I/O system critical to program reliability and performance

They communicate with each other over networks

- Many system-level issues arise in presence of network
 - Concurrent operations by autonomous processes
 - Coping with unreliable media
 - Cross platform compatibility
 - Complex performance issues

Textbooks

Randal E. Bryant and David R. O'Hallaron,

- Computer Systems: A Programmer's Perspective, Third Edition (CS:APP3e), Pearson, 2016
- http://csapp.cs.cmu.edu
- This book really matters for the course!
 - How to solve labs
 - Practice problems typical of exam problems

Brian Kernighan and Dennis Ritchie,

- The C Programming Language, Second Edition, Prentice Hall, 1988
- Still the best book about C, from the originators

Programs and Data

Topics

- Bits operations, arithmetic, assembly language programs
- Representation of C control and data structures
- Includes aspects of architecture and compilers

- L1 (datalab): Manipulating bits
- L2 (bomblab): Defusing a binary bomb
- L3 (attacklab): The basics of code injection attacks

The Memory Hierarchy

Topics

- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS

- L4 (cachelab): Building a cache simulator and optimizing for locality.
 - Learn how to exploit locality in your programs.

Exceptional Control Flow

Topics

- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

- L5 (tshlab): Writing your own Unix shell.
 - A first introduction to concurrency

Virtual Memory

Topics

- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

- L6 (malloclab): Writing your own malloc package
 - Get a real feel for systems-level programming

Networking, and Concurrency

Topics

- High level and low-level I/O, network programming
- Internet services, Web servers
- concurrency, concurrent server design, threads
- I/O multiplexing with select
- Includes aspects of networking, OS, and architecture

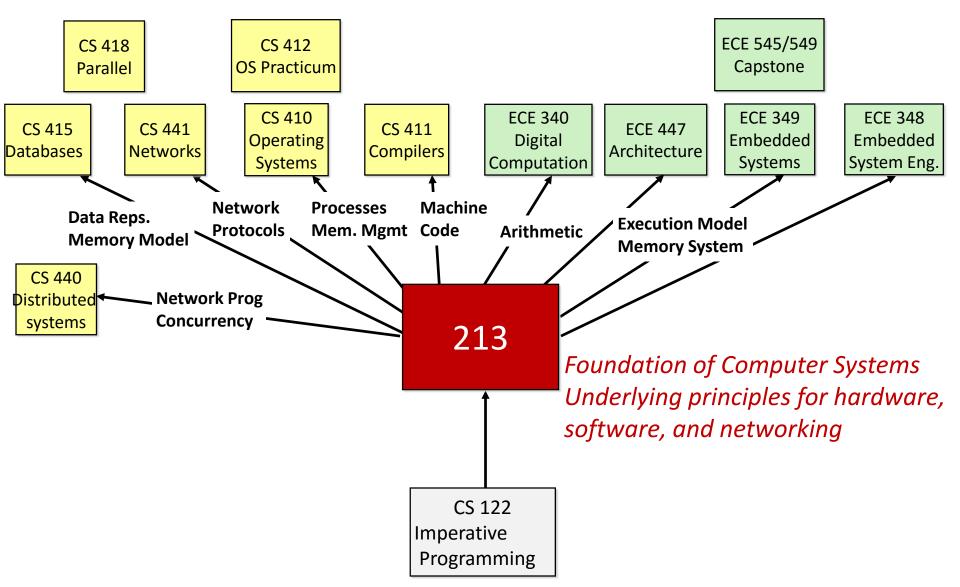
- L7 (proxylab): Writing your own Web proxy
 - Learn network programming and more about concurrency and synchronization.

Lab Rationale

- Each lab has a well-defined goal such as solving a puzzle or winning a contest
- Doing the lab should result in new skills and concepts
- We try to use competition in a fun and healthy way
 - Set a reasonable threshold for full credit
 - Post intermediate results (anonymized) on Autolab scoreboard for glory!

Course Perspective

Most Systems Courses are Builder-Centric


- Computer Architecture
 - Design pipelined processor in Verilog
- Operating Systems
 - Implement sample portions of operating system
- Compilers
 - Write compiler for simple language
- Networking
 - Implement and simulate network protocols

Course Perspective (Cont.)

Our Course is Programmer-Centric

- Purpose is to show that by knowing more about the underlying system, one can be more effective as a programmer
- Enable you to
 - Write programs that are more reliable and efficient
 - Incorporate features that require hooks into OS
 - E.g., concurrency, signal handlers
- Cover material in this course that you won't see elsewhere
- Not just a course for dedicated hackers
 - We bring out the hidden hacker in everyone!

Role within CS/ECE Curriculum

Cheating: Consequences

Penalty for cheating:

- Removal from course with failing grade (no exceptions!)
- Permanent mark on your record
- Your instructors' personal contempt
- If you do cheat come clean asap!

Detection of cheating:

- We have sophisticated tools for detecting code plagiarism
- Last Fall, 20 students were caught cheating and failed the course.
- Some were expelled from the University

Don't do it!

- Start early
- Ask the staff for help when you get stuck

FCEs

Semester: Summer 2016

Course: 15213

Section: A

Course Title: INTR CMPUTER SYSTEMS

Instructor(s): BRIAN RAILING

In the case of multiple instructors, you will be asked to evaluate each instructor separately,

Instructor: BRIAN RAILING (PREVIEW MODE NOTE: The answers to these questions are viewable only by F	(AlLING)								
	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25+
1. On average, how many hours per week have you spont on this class, including attending classes, doing readings, reviewing notes, writing papers and any other course related work?		0	0	.0	0	0	0	0	0
	Excellent (5)		Above Average (4)		Average (3)	Bolow Average (2)		Poor (I)	
2. Does the faculty member display an interest in students' learning?	0		0		0	0		9	
3. Does the faculty member provide a clear explanation of the course requirements?	10		0		0		000		0
4. Does the faculty member provide a clear explanation of the Jeanning objectives or goals of the course?	0		0				0		0

Final Exam

August 5th

- Pittsburgh 11am Close
- Silicon Valley
- Qatar

The focus is on the second half of the course

- IO
- Signals
- Processes
- Virtual Memory
- Malloc
- Threads
- Thread Synchronization

Other Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10

In the following code, a parent opens a file twice, then the child reads a character:

char c;

- int fd1 = open("foo.txt", O_RDONLY);
- int fd2 = open("foo.txt", O_RDONLY);
- if (!fork()) { read(fd1, &c, 1); }

Clearly, in the child, fd1 now points to the second character of foo.txt. Which of the following is now true in the parent?

- (a) fd1 and fd2 both point to the first character.
- (b) fd1 and fd2 both point to the second character.
- (c) fd1 points to the first character while fd2 points to the second character.
- (d) fd2 points to the first character while fd1 points to the second character

Signals

```
void sigint handler(int sig)
{
    pid t pid = fgpid(job list); /* Masking signals */
    sigset t mask, prev mask;
    Sigfillset(&mask);
    Sigprocmask(SIG BLOCK, &mask, &prev mask);
    if (pid!=0)
    {
        /* Sending a SIGINT signal for the process group.
         * Deleting the job. */
        int jid = pid2jid(pid);
        kill(-pid, SIGINT);
        deletejob(job list, pid);
    }
    /* Unblocking the masked signals */
    Sigprocmask(SIG SETMASK, &prev mask, NULL);
    return;
```

Name three bugs in this code

Processes

}

What strings are possible? Is "15213"?

```
int main(int argc, char** argv)
{
    if (fork() == 0) { printf("3"); return 0; }
    else {printf("5"); }
    if (fork() == 0) {printf("2"); }
    printf("1");
    return 0;
```

Virtual Memory

- Virtual addresses are 20 bits wide
- Physical addresses are 18 bits wide
- Page size is 1024 bytes
- TLB is 2-way set associative with 16 total entries
- Label each bit of a virtual address (Virtual Page offset, Virtual page number, TLB index, TLB tag):
- Given virtual address 0x04AA4, what happens?

TLB								
Index	Tag	PPN	Valid					
0	03	C3	1					
	01	71	0					
1	00	28	1					
	01	35	1					
2	02	68	1					
	3A	F1	0					
3	03	12	1					
	02	30	1					

Malloc

For an implicit allocator, with 16-byte alignment, 8-byte headers / footers, and prologue / epilogue.

Malloc(3)

Malloc(11)

Malloc(40)

Free (40)

Malloc(10)

Draw the state of the heap in 8 byte units, label as header / footer (size, alloc or free), payload:

What is the utilization for this allocator, versus 54 bytes?
How much space would be saved by removing footers?

Threads

- What is the range of value(s) that main will print?
- A programmer proposes removing i from thread and just directly accessing count. Does the answer change?

```
volatile int count = 0;
void* thread(void* v)
{
    int i = count;
    i = i + 1;
    count = i;
```

```
int main(int argc, char** argv)
{
    pthread_t tid[2];
    for(int i = 0; i < 2; i++)
        pthread_create(&tid[i],
NULL, thread, NULL);
    for (int i = 0; i < 2; i++)
        pthread_join(tid[i]);
    printf("%d\n", count);
    return 0;
}</pre>
```

Thread Synchronization

Make FIFO -> LIFO

```
void sbuf init(sbuf t *sp, int n)
    sp->buf = Calloc(n, sizeof(int));
    sp ->n = n;
    sp->front = sp->rear = 0;
    Sem init(&sp->mutex, 0, 1);
    Sem init(&sp->slots, 0, n);
    Sem init(&sp->items, 0, 0);
}
void sbuf insert(sbuf t *sp, int item)
    P(&sp->slots);
    P(&sp->mutex);
    sp->buf[(++sp->rear)%(sp->n)] = item;
    V(&sp->mutex);
    V(&sp->items);
```

```
int sbuf remove(sbuf t *sp)
    int item;
    P(&sp->items);
    P(&sp->mutex);
    item = sp->buf[(++sp->front)%(sp->n)];
   V(&sp->mutex);
   V(&sp->slots);
   return item;
```

{

}

}