
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The course that gives CMU its “Zip”!

Course OverReview

15-213: Introduction to Computer Systems
26th Lecture, August 2, 2016

Instructor:

Brian Railing

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

 Course theme

 Five realities

 How the course fits into the CS/ECE curriculum

 Academic integrity

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes from taking 213
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 --> 1600000000

 50000 * 50000 --> ?

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs

 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

 Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

 http://csapp.cs.cmu.edu

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,

 The C Programming Language, Second Edition, Prentice Hall, 1988

 Still the best book about C, from the originators

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

 Topics

 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 Assignments

 L1 (datalab): Manipulating bits

 L2 (bomblab): Defusing a binary bomb

 L3 (attacklab): The basics of code injection attacks

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

 Topics

 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

 Assignments

 L4 (cachelab): Building a cache simulator and optimizing for locality.

 Learn how to exploit locality in your programs.

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

 Topics

 Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

 Includes aspects of compilers, OS, and architecture

 Assignments

 L5 (tshlab): Writing your own Unix shell.

 A first introduction to concurrency

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Topics

 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Assignments
 L6 (malloclab): Writing your own malloc package

 Get a real feel for systems-level programming

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Networking, and Concurrency

 Topics

 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

 Assignments
 L7 (proxylab): Writing your own Web proxy

 Learn network programming and more about concurrency and
synchronization.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

 Set a reasonable threshold for full credit

 Post intermediate results (anonymized) on Autolab scoreboard for glory!

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement sample portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

 Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Cover material in this course that you won’t see elsewhere

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone!

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded

Systems

CS 412
OS Practicum

CS 122
Imperative
Programming

CS 415
Databases

Data Reps.
Memory Model

ECE 340
Digital

Computation

Machine
Code Arithmetic

ECE 348
Embedded

System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

213

ECE 545/549
Capstone

CS 440
Distributed

systems

Network Prog
Concurrency

CS 418
Parallel

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
 Penalty for cheating:

 Removal from course with failing grade (no exceptions!)

 Permanent mark on your record

 Your instructors’ personal contempt

 If you do cheat – come clean asap!

 Detection of cheating:
 We have sophisticated tools for detecting code plagiarism

 Last Fall, 20 students were caught cheating and failed the course.

 Some were expelled from the University

 Don’t do it!
 Start early

 Ask the staff for help when you get stuck

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

FCEs

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Final Exam

 August 5th

 Pittsburgh 11am – Close

 Silicon Valley

 Qatar

 The focus is on the second half of the course

 IO

 Signals

 Processes

 Virtual Memory

 Malloc

 Threads

 Thread Synchronization

 Other

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

IO

In the following code, a parent opens a file twice, then the child
reads a character:
char c;

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

if (!fork()) { read(fd1, &c, 1); }

Clearly, in the child, fd1 now points to the second character of
foo.txt. Which of the following is now true in the parent?

(a) fd1 and fd2 both point to the first character.

(b) fd1 and fd2 both point to the second character.

(c) fd1 points to the first character while fd2 points to the second character.

(d) fd2 points to the first character while fd1 points to the second character

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signals

void sigint_handler(int sig)

{

pid_t pid = fgpid(job_list); /* Masking signals */

sigset_t mask, prev_mask;

Sigfillset(&mask);

Sigprocmask(SIG_BLOCK,&mask,&prev_mask);

if (pid!=0)

{

/* Sending a SIGINT signal for the process group.

* Deleting the job. */

int jid = pid2jid(pid);

kill(-pid, SIGINT);

deletejob(job_list, pid);

}

/* Unblocking the masked signals */

Sigprocmask(SIG_SETMASK,&prev_mask,NULL);

return;

}

Name three bugs in this code

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Processes

What strings are possible? Is “15213”?

int main(int argc, char** argv)

{

if (fork() == 0) { printf(“3”); return 0;}

else {printf(“5”);}

if (fork() == 0) {printf(“2”);}

printf(“1”);

return 0;

}

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Virtual addresses are 20 bits wide

 Physical addresses are 18 bits wide

 Page size is 1024 bytes

 TLB is 2-way set associative with 16 total entries

 Label each bit of a virtual address (Virtual Page offset, Virtual
page number, TLB index, TLB tag):

 Given virtual address 0x04AA4, what happens?

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Malloc

 For an implicit allocator, with 16-byte alignment, 8-byte
headers / footers, and prologue / epilogue.

Malloc(3)

Malloc(11)

Malloc(40)

Free (40)

Malloc(10)

 Draw the state of the heap in 8 byte units, label as header /
footer (size, alloc or free), payload:

 What is the utilization for this allocator, versus 54 bytes?

 How much space would be saved by removing footers?

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Threads

 What is the range of value(s)
that main will print?

 A programmer proposes
removing i from thread and
just directly accessing count.
Does the answer change?

volatile int count = 0;

void* thread(void* v)

{

int i = count;

i = i + 1;

count = i;

}

int main(int argc, char** argv)

{

pthread_t tid[2];

for(int i = 0; i < 2; i++)

pthread_create(&tid[i],

NULL, thread, NULL);

for (int i = 0; i < 2; i++)

pthread_join(tid[i]);

printf(“%d\n”, count);

return 0;

}

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread Synchronization

 Make FIFO -> LIFO

void sbuf_init(sbuf_t *sp, int n)

{

sp->buf = Calloc(n, sizeof(int));

sp->n = n;

sp->front = sp->rear = 0;

Sem_init(&sp->mutex, 0, 1);

Sem_init(&sp->slots, 0, n);

Sem_init(&sp->items, 0, 0);

}

void sbuf_insert(sbuf_t *sp, int item)

{

P(&sp->slots);

P(&sp->mutex);

sp->buf[(++sp->rear)%(sp->n)] = item;

V(&sp->mutex);

V(&sp->items);

}

int sbuf_remove(sbuf_t *sp)

{

int item;

P(&sp->items);

P(&sp->mutex);

item = sp->buf[(++sp->front)%(sp->n)];

V(&sp->mutex);

V(&sp->slots);

return item;

}

