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Today

 Parallel  Computing Hardware
 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models
 What happens when multiple threads are reading & writing shared 

state



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

 e.g., one thread per client to prevent one from delaying another

 Multi-core/Hyperthreaded CPUs offer another 
opportunity

 Spread work over threads executing in parallel

 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients

 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks
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Typical Multicore Processor

 Multiple processors operating with coherent view of 
memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into 
stream of operations

 Operations mapped onto functional units to execute in 
parallel
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Hyperthreading Implementation

 Replicate enough instruction control to process K 
instruction streams

 K copies of all registers

 Share functional units
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Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
 Intel Xeon E5520 @ 2.27 GHz

 Nehalem, ca. 2010

 8 Cores

 Each can do 2x hyperthreading
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Example 1: Parallel Summation

 Sum numbers 0, …, n-1
 Should add up to ((n-1)*n)/2

 Partition values 1, …, n-1 into t ranges

 n/t values in each range

 Each of t threads processes 1 range 

 For simplicity, assume n is a multiple of t

 Let’s consider different ways that multiple threads might 
work on their assigned ranges in parallel
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First attempt: psum-mutex

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0;           /* Global sum */

long nelems_per_thread;  /* Number of elements to sum */

sem_t mutex;             /* Mutex to protect global sum */

int main(int argc, char **argv)

{

long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];

pthread_t tid[MAXTHREADS];

/* Get input arguments */

nthreads = atoi(argv[1]);

log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);

nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c
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psum-mutex (cont)

/* Create peer threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;                                  

Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]); 

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);                   

/* Check final answer */

if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum); 

return 0;

} psum-mutex.c

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.
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psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum_mutex(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;

for (i = start; i < end; i++) {        

P(&mutex);                     

gsum += i;                     

V(&mutex);                     

}

return NULL;

} psum-mutex.c
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psum-mutex Performance

 Shark machine with 8 cores,  n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

 Nasty surprise:
 Single thread is very slow

 Gets slower as we use more cores
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Next Attempt: psum-array

 Peer thread i sums into global array element psum[i]

 Main waits for theads to finish, then sums elements of psum

 Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum_array(void *vargp)                                                                                               

{                                                                                                                          

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;                                                                                                                

for (i = start; i < end; i++) {        

psum[myid] += i;                   

}

return NULL;                                                                                                           

} psum-array.c
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psum-array Performance

 Orders of magnitude faster than psum-mutex
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Next Attempt: psum-local

 Reduce memory references by having peer thread i sum 
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum_local(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i, sum = 0;

for (i = start; i < end; i++) {        

sum += i;                          

}

psum[myid] = sum;

return NULL;

} psum-local.c
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psum-local Performance

 Significantly faster than psum-array
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Characterizing Parallel Program Performance

 p processor cores, Tk is the running time using k cores

 Def. Speedup:  Sp = T1 / Tp

 Sp is  relative speedup if T1 is running time of parallel version of the 
code running on 1 core.

 Sp is absolute speedup if T1 is running time of sequential version of 
code running on 1 core. 

 Absolute speedup is a much truer measure of the benefits of 
parallelism. 

 Def.  Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100].

 Measures the overhead due to parallelization
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Performance of psum-local

Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time 
(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

 Efficiencies OK, not great

 Our example is easily parallelizable

 Real codes are often much harder to parallelize
 e.g., parallel quicksort later in this lecture
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Amdahl’s Law

 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.

 Overall problem
 T Total sequential time required

 p Fraction of total that can be sped up (0  p   1)

 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster

 Portion which cannot be sped up stays the same

 Least possible running time:

 k = 

 T = (1-p)T
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Amdahl’s Law Example

 Overall problem
 T = 10 Total time required

 p = 0.9 Fraction of total which can be sped up

 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0

 Least possible running time:

 T = 0.1 * 10.0 = 1.0
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A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X

 Rearrange X into

 L: Values  p

 R: Values  p

 Recursively sort L to get L

 Recursively sort R to get R

 Return L : p : R
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Sequential Quicksort Visualized
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Sequential Quicksort Visualized
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Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}
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Parallel Quicksort
 Parallel quicksort of set of values X

 If N  Nthresh, do sequential quicksort

 Else

 Choose “pivot” p from X

 Rearrange X into

– L: Values  p

– R: Values  p

 Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

 Return L : p : R
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Parallel Quicksort Visualized
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Thread Structure: Sorting Tasks

 Task: Sort subrange of data
 Specify as:

 base: Starting address

 nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads
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Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads
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Large Sort Task Operation

X

  

pL R
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pL R

Partition Subrange

Spawn 2 tasks
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Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}
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Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}
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Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism

 F too large: Thread overhead + run out of thread memory
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Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
 Top-level partition: No speedup

 Second level:  2X speedup

 kth level:   2k-1X speedup

 Implications
 Good performance for small-scale parallelism

 Would need to parallelize partitioning step to get large-scale 
parallelism

 Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions
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Experience with Parallel Partitioning

 Could not obtain speedup

 Speculate: Too much data copying
 Could not do everything within source array

 Set up temporary space for reassembling partition
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Lessons Learned

 Must have parallelization strategy
 Partition into K independent parts

 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult

 Set up experimental framework and test multiple strategies
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Memory Consistency

 What are the possible values printed?
 Depends on memory consistency model

 Abstract model of how hardware handles concurrent accesses 

 Sequential consistency
 Overall effect consistent with each individual thread

 Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Sequential Consistency Example

 Impossible outputs
 100, 1 and 1, 100

 Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200

1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);



Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Coherent Cache Scenario

 Write-back caches, without 
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for 
one of its E-tagged blocks

 Supply value from cache

 Set tag to S


