
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Level Parallelism

15-213: Introduction to Computer Systems
26th Lecture, July 28, 2016

Instructor:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Parallel Computing Hardware
 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models
 What happens when multiple threads are reading & writing shared

state

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

 e.g., one thread per client to prevent one from delaying another

 Multi-core/Hyperthreaded CPUs offer another
opportunity

 Spread work over threads executing in parallel

 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients

 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Multicore Processor

 Multiple processors operating with coherent view of
memory

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-Order Processor Structure

 Instruction control dynamically converts program into
stream of operations

 Operations mapped onto functional units to execute in
parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hyperthreading Implementation

 Replicate enough instruction control to process K
instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A
PC B

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
 Intel Xeon E5520 @ 2.27 GHz

 Nehalem, ca. 2010

 8 Cores

 Each can do 2x hyperthreading

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 1: Parallel Summation

 Sum numbers 0, …, n-1
 Should add up to ((n-1)*n)/2

 Partition values 1, …, n-1 into t ranges

 n/t values in each range

 Each of t threads processes 1 range

 For simplicity, assume n is a multiple of t

 Let’s consider different ways that multiple threads might
work on their assigned ranges in parallel

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First attempt: psum-mutex

 Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0; /* Global sum */

long nelems_per_thread; /* Number of elements to sum */

sem_t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)

{

long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];

pthread_t tid[MAXTHREADS];

/* Get input arguments */

nthreads = atoi(argv[1]);

log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);

nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex (cont)

/* Create peer threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;

Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]);

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);

/* Check final answer */

if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum);

return 0;

} psum-mutex.c

 Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum_mutex(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i;

for (i = start; i < end; i++) {

P(&mutex);

gsum += i;

V(&mutex);

}

return NULL;

} psum-mutex.c

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Performance

 Shark machine with 8 cores, n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

 Nasty surprise:
 Single thread is very slow

 Gets slower as we use more cores

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-array

 Peer thread i sums into global array element psum[i]

 Main waits for theads to finish, then sums elements of psum

 Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum_array(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i;

for (i = start; i < end; i++) {

psum[myid] += i;

}

return NULL;

} psum-array.c

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance

 Orders of magnitude faster than psum-mutex

5.36

4.24

2.54

1.64

0.94

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

 s
e

co
n

d
s

Threads (cores)

Parallel Summation

psum-array

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-local

 Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum_local(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i, sum = 0;

for (i = start; i < end; i++) {

sum += i;

}

psum[myid] = sum;

return NULL;

} psum-local.c

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-local Performance

 Significantly faster than psum-array

5.36

4.24

2.54

1.64

0.94

1.98

1.14

0.6
0.32 0.33

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

 s
e

co
n

d
s

Threads (cores)

Parallel Summation

psum-array

psum-local

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing Parallel Program Performance

 p processor cores, Tk is the running time using k cores

 Def. Speedup: Sp = T1 / Tp

 Sp is relative speedup if T1 is running time of parallel version of the
code running on 1 core.

 Sp is absolute speedup if T1 is running time of sequential version of
code running on 1 core.

 Absolute speedup is a much truer measure of the benefits of
parallelism.

 Def. Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100].

 Measures the overhead due to parallelization

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance of psum-local

Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time
(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

 Efficiencies OK, not great

 Our example is easily parallelizable

 Real codes are often much harder to parallelize
 e.g., parallel quicksort later in this lecture

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law

 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.

 Overall problem
 T Total sequential time required

 p Fraction of total that can be sped up (0 p 1)

 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster

 Portion which cannot be sped up stays the same

 Least possible running time:

 k =

 T = (1-p)T

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law Example

 Overall problem
 T = 10 Total time required

 p = 0.9 Fraction of total which can be sped up

 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0

 Least possible running time:

 T = 0.1 * 10.0 = 1.0

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X

 Rearrange X into

 L: Values p

 R: Values p

 Recursively sort L to get L

 Recursively sort R to get R

 Return L : p : R

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

L

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L

R

pL R

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort
 Parallel quicksort of set of values X

 If N Nthresh, do sequential quicksort

 Else

 Choose “pivot” p from X

 Rearrange X into

– L: Values p

– R: Values p

 Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

 Return L : p : R

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p

L

Rp

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread Structure: Sorting Tasks

 Task: Sort subrange of data
 Specify as:

 base: Starting address

 nele: Number of elements in subrange

 Run as separate thread

X

Task Threads

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Small Sort Task Operation

 Sort subrange using serial quicksort

X

Task Threads

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Large Sort Task Operation

X

pL R

X

pL R

Partition Subrange

Spawn 2 tasks

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism

 F too large: Thread overhead + run out of thread memory

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
 Top-level partition: No speedup

 Second level: 2X speedup

 kth level: 2k-1X speedup

 Implications
 Good performance for small-scale parallelism

 Would need to parallelize partitioning step to get large-scale
parallelism

 Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experience with Parallel Partitioning

 Could not obtain speedup

 Speculate: Too much data copying
 Could not do everything within source array

 Set up temporary space for reassembling partition

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lessons Learned

 Must have parallelization strategy
 Partition into K independent parts

 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult

 Set up experimental framework and test multiple strategies

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Consistency

 What are the possible values printed?
 Depends on memory consistency model

 Abstract model of how hardware handles concurrent accesses

 Sequential consistency
 Overall effect consistent with each individual thread

 Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Consistency Example

 Impossible outputs
 100, 1 and 1, 100

 Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200

1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Coherent Cache Scenario

 Write-back caches, without
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for
one of its E-tagged blocks

 Supply value from cache

 Set tag to S

