Carnegie Mellon

Network Programming: Part |

15-213: Introduction to Computer Systems
215t Lecture, July 12, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Client-Server Transaction

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

1. Client sends request

Client) Server

Resource

process / process
4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Hardware Organization of a Network Host

CPU chip
register file
: { ALU
iI system bus
r'd
M S 1/0
\,7 bridge

)

memory bus

l

main
memory

Expansion slots

<

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

<

USB

controller

T

T

<

graphics
adapter

mouse keyboard

l

monitor

1/0 bus {}

H

>

\/

disk
controller

network
adapter

A

A 4

I

[network]

Carnegie Mellon

Hardware Organization of a Network Host

CPU chip

register file

:> ALU
=

iI system bus
//

memory bus

M /—j> 1/0

bridge

main
memory

)

l

Expansion slots

<

JH>

1/0 bus
Lo JL

Q S)
USB graphics disk network
antroIIe{ adapter controllen adapter
mouse keyboard monitor ﬁ I
disk network J
@))

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Networks

m A network is a hierarchical system of boxes and wires
organized by geographical proximity

= SAN (System Area Network) spans cluster or machine room
= Switched Ethernet, Quadrics QSW, ...

= LAN (Local Area Network) spans a building or campus
= Ethernet is most prominent example

= WAN (Wide Area Network) spans country or world
= Typically high-speed point-to-point phone lines

m An internetwork (internet) is an interconnected set of
networks

= The Global IP Internet (uppercase
of an internet (lowercase “i”)

IIIII

) is the most famous example

m Let’s see how an internet is built from the ground up

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Lowest Level: Ethernet Segment

host host host

100 Mb/s m 100 Mb/s

port
m Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

m Spans room or floor in a building

m Operation
= Each Ethernet adapter has a unique 48-bit address (MAC address)
= E.g.,00:16:ea:e3:54:e6
" Hosts send bits to any other host in chunks called frames

= Hub slavishly copies each bit from each port to every other port

= Every host sees every bit

= Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough
to replace them 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

A

host

host

host

X

1 100 Mb/s | ,... | 100 Mb/s
hub @dﬁj hub

100 Mb/s
[b

host

host

m Spans building or campus

1 Gb/s

— =)
Y

(Edg_e] 100 Mb/s

host

host host
host host
Lh ub I
host host
C

Carnegie Mellon

m Bridges cleverly learn which hosts are reachable from which

ports and then selectively copy frames from port to port

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Conceptual View of LANs

m For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host | | host |***| host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Next Level: internets

m Multiple incompatible LANs can be physically connected by
specialized computers called routers

m The connected networks are called an internet (lower case)

host host | *** | host host host | *** | host

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.qg., Ethernet, Fibre Channel, 802.11%*, T1-links, DSL, ...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Logical Structure of an internet

m Ad hoc interconnection of networks
"= No particular topology
= Vastly different router & link capacities

m Send packets from source to destination by hopping through
networks
= Router forms bridge from one network to another
= Different packets may take different routes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

The Notion of an internet Protocol

m How is it possible to send bits across incompatible LANs
and WANs?

m Solution: protocol software running on each host and

router

® Protocol is a set of rules that governs how hosts and routers should
cooperate when they transfer data from network to network.

= Smooths out the differences between the different networks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

OSI| Model

s)
OSI Model
Data Layer
Application
(Data NetBErk Process to
. Application W,
4 Presentation
- Data Data Rgpfeseqtation
] and Encryption)
7 Session
8 (Data I Interhost Communication]
I
Tran%port_
TCP Segments| End-to-End Connections
and Reliability
IP 0 (PacketsX Patrl\\l [)eeit:e‘{"rln?nr;%on)
o and IP (Logical Addressing)
>
> :
Frames ; (FramesI ?A%aan!'{ml:()
5 (Phyiscal addressing)
9]
o J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

What Does an internet Protocol Do?

m Provides a naming scheme
= Aninternet protocol defines a uniform format for host addresses

= Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

m Provides a delivery mechanism
= Aninternet protocol defines a standard transfer unit (packet)
= Packet consists of header and payload

= Header: contains info such as packet size, source and destination
addresses

= Payload: contains data bits sent from source host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Transferring internet Data Via Encapsulation

LAN1

(1) data
internet packet

(2) data PH | FH1
LAN1 fra‘n;e

(3) data PH | FH1

(4)

PH: Internet packet header
ﬁ'HﬁthM’ﬁEMﬂecbre@d-e{ystems: A Programmer’s Perspective, Ihird edition

Host A Host B LAN2
client server
(8) | data
protocol protocol
software software
(7) | data PH | FH2
LAN1 LAN2
adapter adapter
Router Y
(6) data PH | FH2
LAN1 LAN2
adapter adapter
7 LAN2 frame
data PH | FH1 data PH | FH2 | (5)
protocol
software

14

Carnegie Mellon

Other Issues

m We are glossing over a number of important questions:

= What if different networks have different maximum frame sizes?
(segmentation)

" How do routers know where to forward frames?

= How are routers informed when the network topology changes?
= What if packets get lost?

m These (and other) questions are addressed by the area of
systems known as computer networking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Global IP Internet (upper case)

m Most famous example of an internet

m Based on the TCP/IP protocol family
= |P (Internet Protocol) :

= Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

= UDP (Unreliable Datagram Protocol)

= Uses IP to provide unreliable datagram delivery from
process-to-process

= TCP (Transmission Control Protocol)

= Uses IP to provide reliable byte streams from process-to-process
over connections

m Accessed via a mix of Unix file I/O and functions from the
sockets interface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Hardware and Software Organization
of an Internet Application

Internet client host Internet server host
Client User code Server
Sockets interface ¥ ¥
(system calls) v Y
TCP/IP Kernel code TCP/IP
Hardware interface 7 5
(interrupts) v Y
Network | Hardware Network
adapter | and firmware adapter
[Global IP Internet]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit /P addresses
= 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
= 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Aside: IPv4 and IPv6

m The original Internet Protocol, with its 32-bit addresses, is
known as Internet Protocol Version 4 (IPv4)

m 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
" |ntended as the successor to |IPv4

m As of 2015, vast majority of Internet traffic still carried by
IPv4

" Only 4% of users access Google services using IPv6.

m We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

(1) IP Addresses

m 32-bit IP addresses are stored in an /P address struct

= |P addresses are always stored in memory in network byte order
(big-endian byte order)

"= True in general for any integer transferred in a packet header from one
machine to another.

= E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
uint32 t s_addr; /* network byte order (big-endian) */

};

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period
= |P address: 0x8002C2F2 = 128.2. .242

m Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

(2) Internet Domain Names

unnamed root
.net /.edu\ 8oV .com First-level domain names
mit cmu berkeley amazon Second-level domain names
cs ece WWW Third-level domain names
/ \ 176.32.98.166
ics pdl
whaleshark WWW

128.2.210.175 128.2.131.66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Domain Naming System (DNS)

m The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database called
DNS

m Conceptually, programmers can view the DNS database as a
collection of millions of host entries.

® Each host entry defines the mapping between a set of domain names and IP
addresses.

" |n a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Properties of DNS Mappings

m Can explore properties of DNS mappings using nslookup

= Qutput edited for brevity

m Each host has a locally defined domain name 1localhost
which always maps to the loopback address 127 .0.0.1

linux> nslookup localhost
Address: 127.0.0.1

m Use hostname to determine real domain name of local host:

linux> hostname
whaleshark.ics.cs.cmu.edu

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Properties of DNS Mappings (cont)

m Simple case: one-to-one mapping between domain name and IP
address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

m Multiple domain names mapped to the same IP address:

linux> nslookup cs.mit.edu
Address: 18.62.1.6

linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Properties of DNS Mappings (cont)

m Multiple domain names mapped to multiple IP addresses:

linux> nslookup www.twitter.com
Address: 199.16.156.6

Address: 199.16.156.70

Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

m Some valid domain names don’t map to any IP address:

linux> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

(3) Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections. Each connection is:

= Point-to-point: connects a pair of processes.
" Full-duplex: data can flow in both directions at the same time,

= Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically by client kernel when client
makes a connection request.

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Well-known Ports and Service Names

m Popular services have permanently assigned well-known
ports and corresponding well-known service names:
= echo server: 7/echo
" ssh servers: 22/ssh
= email server: 25/smtp
= Web servers: 80/http

m Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux

machine.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Anatomy of a Connection

m A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

" (cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80
/ \ Server

P

< »

Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

v

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

v

Kernel

Echo server
(port 7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Sockets Interface

m Set of system-level functions used in conjunction with
Unix I/0 to build network applications.

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

m Available on all modern systems
= Unix variants, Windows, OS X, 10S, Android, ARM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Sockets

m What is a socket?
"= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix 1/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

- o
< »

clientfd serverfd

m The main distinction between regular file 1/0 and socket
1/0 is how the application “opens” the socket descriptors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

= For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {
uintlé t sa family; /* Protocol family */
char sa data[l4]; /* Address data. */

};

sa_family

~
Family Specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Socket Address Structures

m Internet-specific socket address:

" Mustcast (struct sockaddr in *)to(struct sockaddr *)
for functions that take socket address arguments.

struct sockaddr in {

uintl6é t sin family; /* Protocol family (always AF_ INET) */
uintlé t sin port; /* Port num in network byte order */
struct in addr sin_addr; /* IP addr in network byte order */

unsigned char sin zero[8]; /* Pad to sizeof(struct sockaddr) */

sin_port sin_addr

AF INET o(o0o|/0|0|O0O|O0O]O0]|O0

sa_family \ .

Family Specific

sin family

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

2. Start client 1. Start server

Client Server Soc kEtS
(. .)
getaddrinfo getaddrinfo I nte r a Ce
socket socket
l \{ open_listenfd
open clientfd < bind
listen
Connectign l /
request
connect iniainiaiaiely == accept <
\ / \ 2

4 v v 3. Exchange\
Client / » rio writen »rio readlinebi« data
Server l l .)
Sessi Await connection

ession
rio_readlineb [« rio_writen request from
U next client /
close = [|---4- E —QE———— rio readlineb
)) 5. Drop client
4. Disconnect client
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Client Server Sockets

\
[getaddrinfo getaddrinfo I nte rfa ce
socket socket
l \ open_listenfd
open clientfd < bind
listen
Connection l /
request
L connect [~""TTTTooooo- > accept <
v v
Cﬁent/ » rio writen »rio readlinebi«
Server l l . .
Session Await connection
rio_readlineb [« rio_writen requestﬂ0n1
next client
v \4
close W F----- BOF . »rio readlineb
A\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Client

getaddrinfo

I

Server

getaddrinfo

I

_/

Carnegie Mellon

Sockets
Interface

> open listenfd

Await connection

request from
next client

open clientfd < bind
listen
Connection l /
request
connect [~~~ ---- > accept <
v v
Client / rio_writen »rio readlineb|s
Server l l
Session rio_readlineb [« rio writen
\4 v
EOF

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

rio readlineb

close

37

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

m Example:

int clientfd = Socket (AF_INET, SOCK STREAM, O0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
connection

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sockets
Interface

> open listenfd

Await connection

request from
next client

Client Server
\
getaddrinfo getaddrinfo
socket socket
open clientfd <
listen
Connection l /
request
connect « [~""""TTToooo- g accept <
v v
Cﬁent/ rio writen »rio readlinebi«
Server l l
Session rio_readlineb < rio_writen
v \4
EOF

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

»rio readlineb

close

39

Sockets Interface: bind

m Aserver uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen t addrlen);

m The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

m Similarly, writes to sock£fd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Sockets
Interface

> open listenfd

Await connection

request from
next client

Client Server
\
getaddrinfo getaddrinfo
socket socket
open clientfd < bind
Connection /
request
connect « [~""""TTToooo- g accept <
v v
Cﬁent/ rio writen »rio readlinebi«
Server l l
Session rio_readlineb < rio_writen
v \4
EOF

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

rio readlineb

close

4

Sockets Interface: 1isten

m By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

m A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog) ;

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Client Server Sockets

\
[getaddrinfo getaddrinfo I nte rfa ce
socket socket
l \ open_listenfd
open clientfd < bind
listen
Connection l /
request
connect [~ -T--o-o-
\
v +
Cﬁent/ » rio writen »rio readlinebi«
Server l l . .
Session Await connection
rio_readlineb < rio_writen requestﬂ0n1
next client
v \4
close W F----- BOF . »rio readlineb
A\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

int accept(int listenfd, SA *addr, int *addrlen)

m Waits for connection request to arrive on the connection
bound to 1istenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor that can be used to
communicate with the client via Unix /O routines.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

open clientfd <

Client

getaddrinfo

I

socket

Connection

Server

getaddrinfo

I

socket

bind

'

listen

'

accept

Carnegie Mellon

Sockets
Interface

_/

> open listenfd

A

v

Client /
Server
Session

rio_writen

A 4

v

'

rio_readlineb

rio readlineb

'

rio writen

Await connection

request from
next client

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

rio readlineb

close

45

Carnegie Mellon

Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen t addrlen);

m Attempts to establish a connection with server at socket
address addr

= |f successful, then clientfdis now ready for reading and
writing.
= Resulting connection is characterized by socket pair
(x:y, addr.sin addr:addr.sin port)
= x is client address
= v is ephemeral port that uniquely identifies client process on
client host
Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listen£d (3)
request .. > 2. Client makes connection request by
Client Server calling and blocking in connect
clientfd
listenfd (3)
3. Server returns connfd from
Client l) ‘ I Server accept. Client returns from connect.
clientfd connfd (4) Connection is now established between

clientfdand connfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Client

getaddrinfo

I

socket

open clientfd <

Connection

request
connect f-------------

e

Server

Session _
rio_readlineb

close = b--—---TT______

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Server

getaddrinfo

I

socket

bind

'

listen

'

Carnegie Mellon

Sockets
Interface

J

> open listenfd

accept

rio readlineb

rio writen

rio readlineb

A

Await connection
request from
next client

49

Carnegie Mellon

Host and Service Conversion: getaddrinfo

m getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
= Replaces obsolete gethostbyname and getservbyname funcs.

m Advantages:
= Reentrant (can be safely used by threaded programs).

= Allows us to write portable protocol-independent code
= Works with both IPv4 and IPv6

m Disadvantages
= Somewhat complex
= Fortunately, a small number of usage patterns suffice in most cases.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Host and Service Conversion: getaddrinfo

int getaddrinfo (const char *host, /* Hostname or address */
const char *service, /* Port or service name
3/
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */
void freeaddrinfo(struct addrinfo *result); /* Free linked list */
const char *gai strerror(int errcode); /* Return error msg */

m Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

m Helper functions:
" freeadderinfo frees the entire linked list.
" gail strerror converts error code to an error message.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Linked List Returned by getaddrinfo

addrinfo structs

result

Socket address structs

al canonname

ai_addr

ai_next

NULL
ai_addr

ai next

NULL
ai_addr
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bind succeed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

addrinfo Struct

Carnegie Mellon

struct addrinfo {

int ai flags;

int ai family;
int ai_ socktype;
int ai protocol;
char *ai canonname;
size t ai addrlen;

struct sockaddr *ai addr;
struct addrinfo *ai next;

};

/*
/*
/*
/*
/*
/*
/*
/*

Hints argument flags */

First arg to socket function */
Second arg to socket function */
Third arg to socket function */
Canonical host name */

Size of ai_addr struct */

Ptr to socket address structure */
Ptr to next item in linked list */

m Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

m Also points to a socket address struct that can be passed
directly to connect and bind functions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

54

Carnegie Mellon

Host and Service Conversion: getnameinfo

m getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
= Replaces obsolete gethostbyaddr and getservbyport funcs.
= Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen t salen, /* In: socket addr */
char *host, size t hostlen, /* Out: host */
char *serv, size t servlen, /* Out: service */
int flags); /* optional flags */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{

struct addrinfo *p, *listp, hints;
char buf [MAXLINE] ;
int rc, flags;

/* Get a list of addrinfo records */
memset (&hints, 0, sizeof (struct addrinfo));

hints.ai family = AF INET; /* IPv4 only */

hints.ai socktype = SOCK STREAM; /* Connections only */

if ((rc = getaddrinfo(argv[l], NULL, &hints, &listp)) '= 0) {
fprintf (stderr, "getaddrinfo error: %$s\n", gai_ strerror(rc));
exit(1l);

}

hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p—>ai_next) {
Getnameinfo (p->ai_addr, p->ai addrlen,
buf, MAXLINE, NULL, 0, flags);
printf ("%$s\n", buf);
}

/* Clean up */
Freeaddrinfo (1listp) ;

exit (0);
} hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Next time

m Using getaddrinfo for host and service conversion
m Writing clients and servers
m Writing Web servers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Basic Internet Components

m Internet backbone:

= collection of routers (nationwide or worldwide) connected by high-speed
point-to-point networks

m Internet Exchange Points (IXP):

= router that connects multiple backbones (often referred to as peers)
= Also called Network Access Points (NAP)

m Regional networks:

= smaller backbones that cover smaller geographical areas
(e.g., cities or states)

m Point of presence (POP):

" machine that is connected to the Internet

m Internet Service Providers (ISPs):

= provide dial-up or direct access to POPs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Internet Connection Hierarchy

Private

”peering” IXP IXP IXP

agreements

between Colocation
two backbone sites
companies Backbone =---- Backbone Backbone Backbone
. / / \\ / \W

POP POP POP POP POP
Regional net ISP Big Business
POP POP POP POP

Cable
DSL
T T /modem \

ISP (for individuals) Small Business Pgh employee DC employee

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

IP Address Structure
m IP (V4) Address space divided into classes:
0123 8 16 24 31
ClassA |o| NetID Host ID
ClassB 1|0 Net ID Host ID
ClassC [1/1]0 Net ID Host ID
ClassD |1]1{1{0| Multicast address
ClassE |1{1{1|1| Reserved for experiments

m Network ID Written in form w.x.y.z/n

" n =number of bits in host address
= E.g., CMU written as 128.2.0.0/16
= Class B address

m Unrouted (private) IP addresses:
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Evolution of Internet

m Original Idea
= Every node on Internet would have unique IP address
= Everyone would be able to talk directly to everyone
= No secrecy or authentication
= Messages visible to routers and hosts on same LAN
= Possible to forge source field in packet header

m Shortcomings
" There aren't enough IP addresses available
= Don't want everyone to have access or knowledge of all other hosts
= Security issues mandate secrecy & authentication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Evolution of Internet: Naming

m Dynamic address assighment
= Most hosts don't need to have known address
= Only those functioning as servers
= DHCP (Dynamic Host Configuration Protocol)
= Local ISP assigns address for temporary use

m Example:
= Laptop at CMU (wired connection)
= |P address 128.2.213.29 (bryant-tp4.cs.cmu. edu)
= Assigned statically
= Laptop at home
= |P address 192.168.1.5
= Only valid within home network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Evolution of Internet: Firewalls

176.3.3.3

—

216.99.99.99

Corporation X

Internet

m Firewalls

" Hides organizations nodes from rest of Internet

= Use local IP addresses within organization

" For external service, provides proxy service
1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

