
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Systems

15-213: Introduction to Computer Systems
18th Lecture, March 22, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cheating: Description
 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file
 Describing: verbal description of code from one person to another.
 Coaching: helping your friend to write a lab, line by line
 Searching the Web for solutions
 Copying code from a previous course or online solution

 You are only allowed to use code we supply, or from the CS:APP
website

 What is NOT cheating?
 Explaining how to use systems or tools
 Helping others with high-level design issues

 See the course syllabus for details.
 Ignorance is not an excuse

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cheating: Consequences
 Penalty for cheating:
 If you do cheat – come clean asap!
 Removal from course with failing grade (no exceptions!)
 Permanent mark on your record
 Your instructors’ personal contempt

 Detection of cheating:
 We have sophisticated tools for detecting code plagiarism
 Last Fall, 20 students were caught cheating and failed the course.
 Some were expelled from the University

 Don’t do it!
 Start early
 Ask the staff for help when you get stuck

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regrading and Style Grading
 CacheLab Style Grades about to be released

 Regrade request deadline: 3/22, 11:59:00 pm EDT
tonight one minute before midnight

 Need one hardcopy request and one email
Gave hardcopy to TA after exam or to instructor,
slide hardcopy under Seth’s or Franz’ door

 Result may show up in exam server
unless you are a “special case”

 Final score will be uploaded to autolab later this week

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab
 Out tonight

 Due April 8

 Checkpoint due March 31

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Office Hours
 I am there every week…

 It is usually not very crowded

 Just come by to check in
even if you do not have a question

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://teeccino.com/lifestyle/106/Drip-Coffee-Makers.html&psig=AFQjCNGgdWZHJGtBLT1DVAMt8OSy_7i7KQ&ust=1458752524739008

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Transaction Lookaside Buffer (TLB)

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory and Physical Memory
 Page hit: reference to VM word that is in physical memory

(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
 Simplifying memory allocation

 Sharing code and data among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1
0 p-1 n-1

VPO VPN 2 ... VPN k

PPN

0 p-1 m-1
PPO PPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Set Associative Cache: Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

CT
tag

CI
index

CO
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Simple memory system example
 Case study: Core i7/Linux memory system
 Memory mapping

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review of Symbols
 Basic Parameters

 N = 2n : Number of addresses in
virtual address space

 M = 2m : Number of addresses in
physical address space

 P = 2p : Page size (bytes)

 Components of the virtual address (VA)
 TLBI: TLB index
 TLBT: TLB tag
 VPO: Virtual page offset
 VPN: Virtual page number

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)
 PPN: Physical page number
 CO: Byte offset within cache line
 CI: Cache index
 CT: Cache tag

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example
 Addressing
 14-bit virtual addresses
 12-bit physical address
 Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPO PPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System TLB
 16 entries
 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

0 0 0 0 1 1 0 1

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

Transaction Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

Transaction Lookaside Buffer (TLB)

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table
Only show first 16 entries (out of 256)

1 0D 0F
1 11 0E
1 2D 0D
0 – 0C
0 – 0B
1 09 0A
1 17 09
1 13 08

Valid PPN VPN

0 – 07
0 – 06
1 16 05
0 – 04
1 02 03
1 33 02
0 – 01
1 28 00

Valid PPN VPN

0x0D → 0x2D

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Cache
 16 lines, 4-byte block size
 Physically addressed
 Direct mapped

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPO PPN

CO CI CT

03 DF C2 11 1 16 7
– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4
– – – – 0 36 3

08 04 02 00 1 1B 2
– – – – 0 15 1

11 23 11 99 1 19 0
B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F
D3 1B 77 83 1 13 E
15 34 96 04 1 16 D

– – – – 0 12 C
– – – – 0 0B B

3B DA 15 93 1 2D A
– – – – 0 2D 9

89 51 00 3A 1 24 8
B3 B2 B1 B0 Valid Tag Idx

1 0 1 0 0 1

V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

03 DF C2 11 1 16 7
– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4
– – – – 0 36 3

08 04 02 00 1 1B 2
– – – – 0 15 1

11 23 11 99 1 19 0
B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F
D3 1B 77 83 1 13 E
15 34 96 04 1 16 D

– – – – 0 12 C
– – – – 0 0B B

3B DA 15 93 1 2D A
– – – – 0 2D 9

89 51 00 3A 1 24 8
B3 B2 B1 B0 Valid Tag Idx

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

0 0 1 0 1 0 1 1 1 1 0 0 0 0

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 1 0 1 0 1 1 0 1 0

0 0x5 0x0D Y 0x36 0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

Transaction Lookaside Buffer (TLB)

03 DF C2 11 1 16 7
– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4
– – – – 0 36 3

08 04 02 00 1 1B 2
– – – – 0 15 1

11 23 11 99 1 19 0
B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F
D3 1B 77 83 1 13 E
15 34 96 04 1 16 D

– – – – 0 12 C
– – – – 0 0B B

3B DA 15 93 1 2D A
– – – – 0 2D 9

89 51 00 3A 1 24 8
B3 B2 B1 B0 Valid Tag Idx

03 DF C2 11 1 16 7
– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4
– – – – 0 36 3

08 04 02 00 1 1B 2
– – – – 0 15 1

11 23 11 99 1 19 0
B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F
D3 1B 77 83 1 13 E
15 34 96 04 1 16 D

– – – – 0 12 C
– – – – 0 0B B

3B DA 15 93 1 2D A
– – – – 0 2D 9

89 51 00 3A 1 24 8
B3 B2 B1 B0 Valid Tag Idx

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0x00 0 0x00 N N 0x28

0 0 0 0 0 0 0 0 0 1 1 1

0 0x8 0x28 N Mem

0 – 07
0 – 06
1 16 05
0 – 04
1 02 03
1 33 02
0 – 01
1 28 00

Valid PPN VPN
Page table

03 DF C2 11 1 16 7
– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4
– – – – 0 36 3

08 04 02 00 1 1B 2
– – – – 0 15 1

11 23 11 99 1 19 0
B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F
D3 1B 77 83 1 13 E
15 34 96 04 1 16 D

– – – – 0 12 C
– – – – 0 0B B

3B DA 15 93 1 2D A
– – – – 0 2D 9

89 51 00 3A 1 24 8
B3 B2 B1 B0 Valid Tag Idx

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory Exam Question

0x4C20

Exam: http://www.cs.cmu.edu/~213/oldexams/exam2b-s11.pdf (solution)

13 12 11 10 9 8 7 6 5 4 3 2 1 0
TLBI TLBT

15 14

0x7E85
0x7E85 CI = 0x2

CT = 0x1F

0x7E85 → 0x9585

0x9585

0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0

= 0x0111111010000101

http://www.cs.cmu.edu/%7E213/oldexams/exam2b-s11.pdf
http://www.cs.cmu.edu/%7E213/oldexams/exam2b-s11-sol.txt
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwinqIG7rtPLAhXEPT4KHZA-AYUQjRwIBw&url=https://en.wikipedia.org/wiki/Boating&psig=AFQjCNEY0iJj5kje-URi9KrYUPw-INP-9A&ust=1458704114480983

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Simple memory system example
 Case study: Core i7/Linux memory system
 Memory mapping

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores
To I/O
bridge

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
4 32

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
9 9

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
9 9

PTE PTE PTE

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
Unused XD

Available for OS (page table location on disk) P=0

52 62 63

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
Unused XD

Available for OS (page location on disk) P=0

52 62 63

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical
address
of page

Physical
address
of L1 PT

9

VPO
9 12 Virtual

address

L4 PT
Page
table

L4 PTE

PPN PPO
40 12 Physical

address

Offset into
physical and
virtual page

VPN 3 VPN 4 VPN 2 VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper

directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

9 9

40
/

40
/

40
/

40
/

40
/

12 /

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

 Observation
 Bits that determine CI identical in virtual and physical address
 Can index into cache while address translation taking place
 Generally we hit in TLB, so PPN bits (CT bits) available next
 “Virtually indexed, physically tagged”
 Cache carefully sized to make this possible

Physical
address

(PA)

CT CO
40 6

CI
6

Virtual
address

(VA) VPN VPO

36 12

PPO PPN

Address
Translation

No
Change

CI

L1 Cache

CT Tag Check

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memory Identical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack) Kernel

virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”
task_struct

mm_struct

pgd mm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
 Page global directory address
 Points to L1 page table

 vm_prot:
 Read/write permissions for

this area

 vm_flags
 Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write
2

read
3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Simple memory system example
 Case study: Core i7/Linux memory system
 Memory mapping

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mapping
 VM areas initialized by associating them with disk objects.
 Process is known as memory mapping.

 Area can be backed by (i.e., get its initial values from) :
 Regular file on disk (e.g., an executable object file)

 Initial page bytes come from a section of a file
 Anonymous file (e.g., nothing)

 First fault will allocate a physical page full of 0's (demand-zero page)
 Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a

special swap file.

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

 Process 1 maps
the shared
object.

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps
the shared
object.

 Notice how the
virtual
addresses can
be different.

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Two processes
mapping a private
copy-on-write
(COW) object.

 Area flagged as
private copy-on-
write

 PTEs in private
areas are flagged
as read-only

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Instruction writing
to private page
triggers
protection fault.

 Handler creates
new R/W page.

 Instruction
restarts upon
handler return.

 Copying deferred
as long as
possible!

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The fork Function Revisited

 VM and memory mapping explain how fork provides private
address space for each process.

 To create virtual address for new new process
 Create exact copies of current mm_struct, vm_area_struct, and

page tables.
 Flag each page in both processes as read-only
 Flag each vm_area_struct in both processes as private COW

 On return, each process has exact copy of virtual memory

 Subsequent writes create new pages using COW mechanism.

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The execve Function Revisited
 To load and run a new

program a.out in the
current process using
execve:

 Free vm_area_struct’s
and page tables for old areas

 Create vm_area_struct’s
and page tables for new
areas
 Programs and initialized data

backed by object files.
 .bss and stack backed by

anonymous files .

 Set PC to entry point in
.text
 Linux will fault in code and

data pages as needed.

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start
 start: may be 0 for “pick an address”
 prot: PROT_READ, PROT_WRITE, ...
 flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

len bytes

start
(or address

chosen by kernel)

Process virtual memory Disk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;
 int fd;

 /* Check for required cmd line arg */
 if (argc != 2) {
 printf("usage: %s <filename>\n",
 argv[0]);
 exit(0);
 }

 /* Copy input file to stdout */
 fd = Open(argv[1], O_RDONLY, 0);
 Fstat(fd, &stat);
 mmapcopy(fd, stat.st_size);
 exit(0);
}

 Copying a file to stdout without transferring data to user
space .

#include "csapp.h"

void mmapcopy(int fd, int size)
{

 /* Ptr to memory mapped area */
 char *bufp;

 bufp = Mmap(NULL, size,
 PROT_READ,
 MAP_PRIVATE,
 fd, 0);
 Write(1, bufp, size);
 return;
}

mmapcopy.c mmapcopy.c

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:Virtual Memory &Caches
 Components of the virtual address (VA)

 TLBI: TLB index
 TLBT: TLB tag
 VPO: Virtual page offset
 VPN: Virtual page number

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)
 PPN: Physical page number
 CO: Byte offset within cache line
 CI: Cache index
 CT: Cache tag

	Virtual Memory: Systems��15-213: Introduction to Computer Systems	�18th Lecture, March 22, 2016
	Cheating: Description
	Cheating: Consequences
	Regrading and Style Grading
	MallocLab
	Office Hours
	Recap: Hmmm, How Does This Work?!	
	Transaction Lookaside Buffer (TLB)
	Virtual Memory and Physical Memory
	VM as a Tool for Memory Management
	Translating with a k-level Page Table
	Set Associative Cache: Read
	Today		
	Review of Symbols
	Simple Memory System Example
	Simple Memory System TLB
	Simple Memory System Page Table
	Simple Memory System Cache
	Address Translation Example
	Address Translation Example: TLB/Cache Miss
	Virtual Memory Exam Question
	Today		
	Intel Core i7 Memory System
	End-to-end Core i7 Address Translation
	Core i7 Level 1-3 Page Table Entries
	Core i7 Level 4 Page Table Entries
	Core i7 Page Table Translation
	Cute Trick for Speeding Up L1 Access
	Virtual Address Space of a Linux Process
	Linux Organizes VM as Collection of “Areas”
	Linux Page Fault Handling
	Today		
	Memory Mapping
	Sharing Revisited: Shared Objects
	Sharing Revisited: Shared Objects
	Sharing Revisited: �Private Copy-on-write (COW) Objects
	Sharing Revisited: �Private Copy-on-write (COW) Objects
	The fork Function Revisited
	The execve Function Revisited
	User-Level Memory Mapping
	User-Level Memory Mapping
	Example: Using mmap to Copy Files
	Summary:Virtual Memory &Caches

