Lecture 4 Activity Solution

Model 1: What is floating point?

1. 1.5213×10^{4}
2. One possible representation: 8 digits. 15213104. But the answer may vary, depending how you want to represent the number.
3. 18213104 . 8 digits.
4. 18213107. 8 digits
1. 10001100 , which is 1.0001 .
2. 99999999 , which is $9.9999 * 99^{9}$
3. No.

Model 2: Binary Scientific Notation

1. 1
2. $1.0111 * 2^{4}, 1.0111 * 2^{2}, 1.0111 * 2^{1}, 1.0111$
3. 1

Model 3: IEEE Representation

1. Sign bit. The number is negative.
2. 0111
3. 1
4. With no bias, it would be 2 , which is greater than 1 .
5. $0 b 100000001$
6. $E=1-127=126 . f=15213_{10}$
7. From -1022 to 1023

Model 4: Extreme Exponents

1. 1.0000
2. No.
3. Tow, one positive, one negative.
4. 0.0001
5. $+i n f$. No.
6. Largest denormalized number has all 0 for exponent bits and all 1 for fraction bits. Smallest normalized number has all 0 except the lowest exponent bit to be one and all 0 for fraction bits.

Model 5: Addition and Multiplication

1. $1.0011 * 2^{4}$
2. 4
3. $0,0,1,2$
4. $1.00011,1.00,1 ; 1.00101,1.01,1.25 ; 1.111,10.0,2 ; 1.101,1.11,1.75$
5. 1.00011, 1.001, 1.125; 1.00101, 1.001, 1.125; 1.111, 1.111, 1.875, 1.101, 1.101, 1.625
6. 2048
7. 2^{11}

Model 6: Simple Floating-point

1. 15.5 (01101111), 0 (00000000)
2. $01101111+00000000+11101111=01011110$
3. 7,111
4. $01011100+01000011=10011111$
5. $01011100 * 01000011=01000000$

Model 7: Review

1. Yes it will. Some large numbers will have precision that cannot be represented exactly in float. 2^{24}
2. It won't terminate.
