
Carnegie Mellon 

1 

Network Programming Tools 

Richard Ha 



Carnegie Mellon 

2 

Agenda 

Administrivia 
 

Proxy Lab Recap 
 

HTTP Overview 
 

Networking Tools 
 

Debugging Tips & Techniques 



Carnegie Mellon 

3 

Administrivia 

Proxy lab due date extension! 
New due date is Aug. 6, 2015 @ 11:59pm 
 

Will cover changes to handout in a few minutes. 
 

New due date overlaps with final exam dates so be sure to 
finish the lab early. 
 



Carnegie Mellon 

4 

Administrivia 

Proxy lab due date extension! 
New due date is Aug. 6, 2015 @ 11:59pm 
 

Will cover changes to handout in a few minutes. 
 

New due date overlaps with final exam dates so be sure to 
finish the lab early. 
 

Lab Grading 

Shell lab grades are done, please read annotated code. 
 

Malloc grades soon to follow. (Heapchecker, style) 
 



Carnegie Mellon 

5 

Administrivia 

Final Exam 

First round final will take place Thursday+Friday. 
 

Recitation for final exam review will be held on Tuesday. 
 

If you want a question answered / topic covered in the final 
exam review, send an e-mail titled 

“FINAL RECITATION QUESTION” to the staff list. 
 

We will pick a list of questions to cover for the recitation, as 
much as we can fit. 



Carnegie Mellon 

6 

Agenda 

Administrivia 
 

Proxy Lab Recap 
 

HTTP Overview 
 

Networking Tools 
 

Debugging Tips & Techniques 



Carnegie Mellon 

7 
7 

Carnegie Mellon 

What is a Proxy? 

A proxy is a go-between a client and a server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is both a server AND a client! 

Server 
(port 80) 

Client 

Client socket address 
128.2.194.242:51213 

Server socket address 
208.216.181.15:80 

Proxy 

Proxy server socket address 
128.2.194.34:15213 

Proxy client socket address 
128.2.194.34:52943 



Carnegie Mellon 

8 

Proxy Requirements 

HTTP/1.0 

Make and receive HTTP/1.0 requests & responses. 
 

Convert all HTTP/1.1 requests to HTTP/1.0 
 



Carnegie Mellon 

9 

Proxy Requirements 

HTTP/1.0 

Make and receive HTTP/1.0 requests & responses. 
 

Convert all HTTP/1.1 requests to HTTP/1.0 
 

Concurrency 

Needs to be able to handle multiple clients at once. 



Carnegie Mellon 

10 

Proxy Requirements 

HTTP/1.0 

Make and receive HTTP/1.0 requests & responses. 
 

Convert all HTTP/1.1 requests to HTTP/1.0 
 

Concurrency 

Needs to be able to handle multiple clients at once. 
 

Caching 

Needs to temporarily cache web objects in a shared cache 
amongst threads. 



Carnegie Mellon 

11 

Proxy Requirements 

Robustness 
Malformed requests and responses are a fact of real life, and 
not all of them are intentional or malicious. 
 

Your proxy needs to be able to anticipate and deal with 
malformed requests and responses without crashing, 
segfaulting, erroring, exiting, or otherwise prematurely 
terminating. 
 

Servers are expected to run (mostly) forever without human 
intervention. Your proxy is no exception. 



Carnegie Mellon 

12 

Agenda 

Administrivia 
 

Proxy Lab Recap 
 

HTTP Overview 
 

Networking Tools 
 

Debugging Tips & Techniques 



Carnegie Mellon 

13 

Structure of a HTTP Request 

HTTP requests are divided into two parts: 
 

The request line 

The headers 
\r\n 



Carnegie Mellon 

14 

Structure of a HTTP Request 

Request Line: 

<Request Method> <Request-URI> <HTTP-Version>\r\n 
 

There are nine different HTTP methods. We only care about GET. 
 

Examples: 
GET / HTTP/1.0\r\n 

GET http://cs.cmu.edu/~213 HTTP/1.0\r\n 

http://cs.cmu.edu/~213


Carnegie Mellon 

15 

Structure of a HTTP Request 

Headers: 

The headers section consists of a list of header name and 
value pairs. 
<HeaderName>: <HeaderValue>\r\n 
 

Example: 
Host: cs.cmu.edu:80\r\n 

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.3) 
Gecko/20120305 Firefox/10.0.3\r\n 



Carnegie Mellon 

16 

Structure of a HTTP Request 

Headers: 

The change in the lab handout was related to the Accept and 
Accept-Encoding headers. 
 

Handout originally stated you should insert/modify the 
headers. 
 

Now, just treat those two headers like most other headers and 
don't modify/change them. Just pass them as-is if they're 
present. 



Carnegie Mellon 

17 

Structure of a HTTP Response 

HTTP Responses are split into three sections: 

 

Status Line 

Headers 

\r\n 

Entity-Body 



Carnegie Mellon 

18 

Structure of a HTTP Response 

Status Line 

<HTTP-Version> <Status Code> <Reason>\r\n 

 

Example: 

HTTP/1.0 200 OK\r\n 

HTTP/1.0 302 Moved Permanently\r\n 

HTTP/1.0 404 Not Found\r\n 



Carnegie Mellon 

19 

Structure of a HTTP Response 

Headers 

Same format as request headers. 

 

If there is an entity body that comes with the response (e.g. HTML page, 

image, etc.), then there will be a Content-Length header. 



Carnegie Mellon 

20 

Structure of a HTTP Response 

Content Body 

Just a stream of bytes in the designated encoding. 

 

Could be text, could be binary data, could be compressed, could be not 

compressed, etc. 



Carnegie Mellon 

21 

Agenda 

Administrivia 
 

Proxy Lab Recap 
 

HTTP Overview 
 

Networking Tools 
 

Debugging Tips & Techniques 



Carnegie Mellon 

22 

Networking Tools 

Just knowing the lab specifications and the HTTP/1.0 spec is not enough to do a 
lab. 
 
As with any development effort, you need debugging and diagnostic tools to help 
you catch bugs and errors and identify where the problem is occurring. 
 
Thankfully, Shark machines have plenty of tools to use. 
 

Also included some in the lab handout. 



Carnegie Mellon 

23 

Networking Tools 

 Tiny server 
 cURL / wget 
 Telnet 
 Netcat (nc) 
 Valgrind 

 Your browser(s) 
 And many more! 



Carnegie Mellon 

24 

Tiny server 

There is a tiny HTTP server included in your proxy lab handout. 
 



Carnegie Mellon 

25 

Tiny server 

There is a tiny HTTP server included in your proxy lab handout. 
 

It is a 200-line web server written in C. 
 
Invoked with: ./tiny <port> 

 
Serves everything inside ./ 
 
Comes with an example adder CGI script 
 
Consult the README for details. 
 



Carnegie Mellon 

26 

cURL / wget 

Command-line programs that fetch a given web URL. 
 
e.g. $ curl http://lemonshark.ics.cs.cmu.edu:15213/godzilla.jpg 

 
will fetch godzilla.jpg from the tiny server. 
 
curl has a --proxy option that lets you specify a HTTP proxy that it can make 
requests through 

 

http://lemonshark.ics.cs.cmu.edu:15213/godzilla.jpg


Carnegie Mellon 

27 

telnet 

Client application for the TELNET protocol 
 
Telnet client can conveniently be used to communicate and interact with text-
protocol servers like HTTP and IRC servers. 
 

 

 

 

^] usually means Ctrl+] if you haven't changed your keybindings 
 



Carnegie Mellon 

28 

netcat (nc) 

Like the cat program except with networking capabilities. 
 
Can pipe strings or files to a target server and port. 



Carnegie Mellon 

29 

netcat (nc) 

Can also invoke as a listen server on a given port. 
 
e.g. $ nc -l 15213 

 
Easily usable in shell scripts to run tests. 
 
Very versatile tool. 



Carnegie Mellon 

30 

Valgrind 

Very powerful memory debugging tool. 
 
Useful in spotting memory leaks, illegal memory accesses, etc. 



Carnegie Mellon 

31 

Your browser 

Most modern browsers have a HTTP proxy option you can specify. Very useful in 
seeing if your proxy actually works with real-life usage. 



Carnegie Mellon 

32 

Your browser 

Most modern browsers also come with a slew of networking analysis and 
debugging tools. You can log and inspect the requests and responses your browser 
makes and receives to and from your proxy and/or other web servers. 
 
Try Ctrl+Shift+I for developer tools in Chrome or Ctrl+Shift+K for the web console 
in Firefox. 



Carnegie Mellon 

33 

Agenda 

Administrivia 
 

Proxy Lab Recap 
 

HTTP Overview 
 

Networking Tools 
 

Debugging Tips & Techniques 



Carnegie Mellon 

34 

Debugging Tips & Techniques 

• Always go over your proxy's output with a fine-toothed comb. 
 

• Use nc or tiny to display exactly what your proxy is sending. 
 

• Try to avoid blindly using string functions like strcpy() and strlen() when 
handling data. Use strncpy() and strnlen() instead. 

 
• Try to use large port numbers (e.g. 15213-65535) when running your proxy and 

tiny server(s) locally on the Shark machines. Smaller numbers might be 
reserved and already be in use by something else. 



Carnegie Mellon 

35 

Debugging Tips & Techniques 

• Make sure your underlying cache data structure implementation is correct 
before worrying about synchronisation. Maybe write a separate test program 
that includes/uses your cache library. 
 

• Consider making your own testing framework. Save valid requests/responses 
your proxy breaks on to test on the proxy again later. 
 

• Remember to include a method to monitor program flow while debugging race 
conditions and deadlocks. 
 



Carnegie Mellon 

36 

Questions? 



Carnegie Mellon 

37 

GOOD LUCK 


