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Today 

 Basic concepts 

 Implicit free lists 
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Dynamic Memory Allocation  

 Programmers use 
dynamic memory 
allocators (such as 
malloc) to acquire VM 
at run time.  
 For data structures whose 

size is only known at 
runtime. 

 Dynamic memory 
allocators manage an 
area of process virtual 
memory known as the 
heap.  

Heap (via malloc) 

Program text (.text) 

Initialized data (.data) 

Uninitialized data (.bss) 

User stack 

0 

Top of heap 
 (brk ptr) 

Application 

Dynamic Memory Allocator 

Heap 
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Dynamic Memory Allocation 

 Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free 

 Types of allocators 
 Explicit allocator:  application allocates and frees space  

 E.g.,  malloc and free in C 

 Implicit allocator: application allocates, but does not free space 

 E.g. garbage collection in Java, ML, and Lisp 

 

 Will discuss simple explicit memory allocation today 
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The malloc Package 
#include <stdlib.h> 

void *malloc(size_t size) 

 Successful: 

 Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary 

 If size == 0, returns NULL 

 Unsuccessful: returns NULL (0) and sets errno 

void free(void *p) 

 Returns the block pointed at by p to pool of available memory 

 p must come from a previous call to malloc or realloc 

Other functions 

 calloc: Version of malloc that initializes allocated block to zero.  

 realloc: Changes the size of a previously allocated block. 

 sbrk: Old method used by allocators to grow or shrink the heap 

 These days, we use mmap with MAP_ANONYMOUS 
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malloc Example 

void foo(int n, int m) { 

    int i, *p; 

   

    /* Allocate a block of n ints */ 

    p = (int *) malloc(n * sizeof(int)); 

    if (p == NULL) { 

        perror("malloc"); 

        exit(0); 

    } 

   

    /* Initialize allocated block */ 

    for (i=0; i<n; i++)  

        p[i] = i; 

 

   

    /* Return p to the heap */ 

    free(p);  

} 
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Assumptions Made in This Lecture 

 Memory is word addressed (each word can hold a 
pointer) 

Allocated block 
(4 words) 

Free block 
(3 words) Free word 

Allocated word 
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Allocation Example 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 
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Constraints 

 Applications 
 Can issue arbitrary sequence of malloc and free requests 

 free request must be to a malloc’d  block 

 
 Allocators 

 Can’t control number or size of allocated blocks 

 Must respond immediately to malloc requests 

 i.e., can’t reorder or buffer requests 

 Must allocate blocks from free memory 

 i.e., can only place allocated blocks in free memory 

 Must align blocks so they satisfy all alignment requirements 

 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes 

 Can manipulate and modify only free memory 

 Can’t move the allocated blocks once they are malloc’d 

 i.e., compaction is not allowed 
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Performance Goal: Throughput 

 Given some sequence of malloc and free requests: 

  R0, R1, ..., Rk, ... , Rn-1 

 

 Goals: maximize throughput and peak memory utilization 
 These goals are often conflicting 

 

 Throughput: 
 Number of completed requests per unit time 

 Example: 

 5,000  malloc calls and 5,000 free calls in 10 seconds  

 Throughput is 1,000 operations/second 
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Performance Goal: Peak Memory Utilization 

 Given some sequence of malloc and free requests: 
  R0, R1, ..., Rk, ... , Rn-1 

 Def: Aggregate payload Pk  
  malloc(p) results in a block with a payload of p bytes 

 After request Rk has completed, the aggregate payload Pk  is the sum of 
currently allocated payloads 

 Def: Current heap size Hk 

 Assume Hk is monotonically nondecreasing 

 i.e., heap only grows when allocator uses sbrk 

 Def: Peak memory utilization after k+1 requests  
 Uk = ( maxi<=k Pi )  /  Hk 
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Fragmentation 

 Poor memory utilization caused by fragmentation 
 internal fragmentation 

 external fragmentation 
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Internal Fragmentation 

 For a given block, internal fragmentation occurs if payload is 
smaller than block size 

 

 

 

 

 

 

 Caused by  

 Overhead of maintaining heap data structures 

 Padding for alignment purposes 

 Explicit policy decisions  
(e.g., to return a big block to satisfy a small request) 

 Depends only on the pattern of previous requests 

 Thus, easy to measure 

Payload 
Internal  
fragmentation 

Block 

Internal  
fragmentation 
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External Fragmentation 

 Occurs when there is enough aggregate heap memory, 
but no single free block is large enough 

 

 

 

 

 

 

 

 

 Depends on the pattern of future requests 
 Thus, difficult to measure 

 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) Oops! (what would happen now?) 



Carnegie Mellon 

15 

Implementation Issues 

 How do we know how much memory to free given just a 
pointer? 

 

 How do we keep track of the free blocks? 

 

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in? 

 

 How do we pick a block to use for allocation -- many 
might fit? 

 

 How do we reinsert freed block? 
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Knowing How Much to Free 

 Standard method 
 Keep the length of a block in the word preceding the block. 

 This word is often called the header field or header 

 Requires an extra word for every allocated block 

p0 = malloc(4) 

p0 

free(p0) 

block size payload 

5 
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Keeping Track of Free Blocks 

 Method 1: Implicit list using length—links all blocks 

 

 

 

 Method 2: Explicit list among the free blocks using pointers 

 

 
 
 Method 3: Segregated free list 

 Different free lists for different size classes 

 

 Method 4: Blocks sorted by size 
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key 

5 4 2 6 

5 4 2 6 
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Today 

 Basic concepts 

 Implicit free lists 
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Method 1: Implicit List 

 For each block we need both size and allocation status 
 Could store this information in two words: wasteful! 

 Standard trick 
 If blocks are aligned, some low-order address bits are always 0 

 Instead of storing an always-0 bit, use it as a allocated/free flag 

 When reading size word, must mask out this bit 

Size 

1 word 

Format of 
allocated and 
free blocks 

Payload 

a = 1: Allocated block   
a = 0: Free block 
 
Size: block size 
 
Payload: application data 
(allocated blocks only) 
 

a 

Optional 
padding 
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Detailed Implicit Free List Example 

Start  
of  

heap 

Double-word 
aligned 

8/0 16/1 16/1 32/0 

Unused 

0/1 

Allocated blocks: shaded 
Free blocks: unshaded 
Headers: labeled with size in bytes/allocated bit 
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Implicit List: Finding a Free Block 
 First fit: 

 Search list from beginning, choose first free block that fits: 

 

 

 

 

 

 Can take linear time in total number of blocks (allocated and free) 

 In practice it can cause “splinters” at beginning of list 

 Next fit: 

 Like first fit, but search list starting where previous search finished 

 Should often be faster than first fit: avoids re-scanning unhelpful blocks 

 Some research suggests that fragmentation is worse 

 Best fit: 

 Search the list, choose the best free block: fits, with fewest bytes left over 

 Keeps fragments small—usually improves memory utilization 

 Will typically run slower than first fit 

p = start;  

while ((p < end) &&     \\ not passed end 

       ((*p & 1) ||     \\ already allocated 

       (*p  <= len)))   \\ too small  

  p = p + (*p & -2);    \\ goto next block (word addressed) 
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Implicit List: Allocating in Free Block 

 Allocating in a free block: splitting 
 Since allocated space might be smaller than free space, we might want 

to split the block 

void addblock(ptr p, int len) { 

  int newsize = ((len + 1) >> 1) << 1;  // round up to even 

  int oldsize = *p & -2;                // mask out low bit 

  *p = newsize | 1;                     // set new length 

  if (newsize < oldsize) 

    *(p+newsize) = oldsize - newsize;   // set length in remaining 

}                                       //   part of block 

4 4 2 6 

4 2 4 

p 

2 4 

addblock(p, 4) 
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Implicit List: Freeing a Block 

 Simplest implementation: 
 Need only clear the “allocated” flag 

  void free_block(ptr p) { *p = *p & -2 } 

 

 But can lead to “false fragmentation”  

 

 

 

 

 

 

 

4 2 4 2 4 

free(p) p 

4 4 2 4 2 

malloc(5) Oops! 

There is enough free space, but the allocator won’t be able to find it 
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Implicit List: Coalescing 

 Join (coalesce) with next/previous blocks, if they are free 
 Coalescing with next block 

    

 

 

 

 

 

 

 

 

 

 But how do we coalesce with previous block? 

void free_block(ptr p) { 

    *p = *p & -2;          // clear allocated flag 

    next = p + *p;         // find next block 

    if ((*next & 1) == 0) 

      *p = *p + *next;     // add to this block if 

}                          //    not allocated 

4 2 4 2 

free(p) p 

4 4 2 

4 

6 2 

logically 
gone 
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Implicit List: Bidirectional Coalescing  
 Boundary tags [Knuth73] 

 Replicate size/allocated word at “bottom” (end) of blocks 

 Allows us to traverse the “list” backwards, but requires extra space 

 Important and general technique! 

Size 

Format of 
allocated and 
free blocks 

Payload and 
padding 

a = 1: Allocated block   
a = 0: Free block 
 
Size: Total block size 
 
Payload: Application data 
(allocated blocks only) 
 

a 

Size a Boundary tag 
(footer) 

4 4 4 4 6 4 6 4 

Header 
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Constant Time Coalescing 

Allocated 

Allocated 

Allocated 

Free 

Free 

Allocated 

Free 

Free 

Block being 
freed 

Case 1 Case 2 Case 3 Case 4 
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m1 1 

Constant Time Coalescing (Case 1) 

m1 1 

n 1 

n 1 

m2 1 

m2 1 

m1 1 

m1 1 

n 0 

n 0 

m2 1 

m2 1 
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m1 1 

Constant Time Coalescing (Case 2) 

m1 1 

n+m2 0 

n+m2 0 

m1 1 

m1 1 

n 1 

n 1 

m2 0 

m2 0 
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m1 0 

Constant Time Coalescing (Case 3) 

m1 0 

n 1 

n 1 

m2 1 

m2 1 

n+m1 0 

n+m1 0 

m2 1 

m2 1 
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m1 0 

Constant Time Coalescing (Case 4) 

m1 0 

n 1 

n 1 

m2 0 

m2 0 

n+m1+m2 0 

n+m1+m2 0 
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Disadvantages of Boundary Tags 

 Internal fragmentation 

 

 Can it be optimized? 
 Which blocks need the footer tag? 

 What does that mean? 
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Summary of Key Allocator Policies 
 Placement policy: 

 First-fit, next-fit, best-fit, etc. 

 Trades off lower throughput for less fragmentation  

 Interesting observation: segregated free lists (next lecture) 
approximate a best fit placement policy without having to search 
entire free list 

 Splitting policy: 
 When do we go ahead and split free blocks? 

 How much internal fragmentation are we willing to tolerate? 

 Coalescing policy: 
 Immediate coalescing: coalesce each time free is called  

 Deferred coalescing: try to improve performance of free by deferring 
coalescing until needed. Examples: 

 Coalesce as you scan the free list for malloc 

 Coalesce when the amount of external fragmentation reaches 
some threshold 
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Implicit Lists: Summary 
 Implementation: very simple 
 Allocate cost:  

 linear time worst case 

 Free cost:  
 constant time worst case 

 even with coalescing 

 Memory usage:  
 will depend on placement policy 

 First-fit, next-fit or best-fit 

 

 Not used in practice for malloc/free because of linear-
time allocation 
 used in many special purpose applications 

 

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators 


