
Carnegie Mellon

1

Dynamic Memory Allocation:
Basic Concepts

15-213 / 18-213: Introduction to Computer Systems
18th Lecture, Wed 7/8, 2015

Instructors:

nwf and Greg Kesden

Carnegie Mellon

2

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

3

Dynamic Memory Allocation

 Programmers use
dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
 For data structures whose

size is only known at
runtime.

 Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator

Heap

Carnegie Mellon

4

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
 Explicit allocator: application allocates and frees space

 E.g., malloc and free in C

 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

 Successful:

 Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 If size == 0, returns NULL

 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

 Returns the block pointed at by p to pool of available memory

 p must come from a previous call to malloc or realloc

Other functions

 calloc: Version of malloc that initializes allocated block to zero.

 realloc: Changes the size of a previously allocated block.

 sbrk: Old method used by allocators to grow or shrink the heap

 These days, we use mmap with MAP_ANONYMOUS

Carnegie Mellon

6

malloc Example

void foo(int n, int m) {

 int i, *p;

 /* Allocate a block of n ints */

 p = (int *) malloc(n * sizeof(int));

 if (p == NULL) {

 perror("malloc");

 exit(0);

 }

 /* Initialize allocated block */

 for (i=0; i<n; i++)

 p[i] = i;

 /* Return p to the heap */

 free(p);

}

Carnegie Mellon

7

Assumptions Made in This Lecture

 Memory is word addressed (each word can hold a
pointer)

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Carnegie Mellon

8

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

9

Constraints

 Applications
 Can issue arbitrary sequence of malloc and free requests

 free request must be to a malloc’d block

 Allocators

 Can’t control number or size of allocated blocks

 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests

 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory

 Must align blocks so they satisfy all alignment requirements

 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

 Can manipulate and modify only free memory

 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed

Carnegie Mellon

10

Performance Goal: Throughput

 Given some sequence of malloc and free requests:

 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time

 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds

 Throughput is 1,000 operations/second

Carnegie Mellon

11

Performance Goal: Peak Memory Utilization

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk
 malloc(p) results in a block with a payload of p bytes

 After request Rk has completed, the aggregate payload Pk is the sum of
currently allocated payloads

 Def: Current heap size Hk

 Assume Hk is monotonically nondecreasing

 i.e., heap only grows when allocator uses sbrk

 Def: Peak memory utilization after k+1 requests
 Uk = (maxi<=k Pi) / Hk

Carnegie Mellon

12

Fragmentation

 Poor memory utilization caused by fragmentation
 internal fragmentation

 external fragmentation

Carnegie Mellon

13

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

 Overhead of maintaining heap data structures

 Padding for alignment purposes

 Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests

 Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

14

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

15

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reinsert freed block?

Carnegie Mellon

16

Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header

 Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

Carnegie Mellon

17

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list

 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 2 6

5 4 2 6

Carnegie Mellon

18

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

19

Method 1: Implicit List

 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned, some low-order address bits are always 0

 Instead of storing an always-0 bit, use it as a allocated/free flag

 When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

20

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/1 32/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Carnegie Mellon

21

Implicit List: Finding a Free Block
 First fit:

 Search list from beginning, choose first free block that fits:

 Can take linear time in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

 Next fit:

 Like first fit, but search list starting where previous search finished

 Should often be faster than first fit: avoids re-scanning unhelpful blocks

 Some research suggests that fragmentation is worse

 Best fit:

 Search the list, choose the best free block: fits, with fewest bytes left over

 Keeps fragments small—usually improves memory utilization

 Will typically run slower than first fit

p = start;

while ((p < end) && \\ not passed end

 ((*p & 1) || \\ already allocated

 (*p <= len))) \\ too small

 p = p + (*p & -2); \\ goto next block (word addressed)

Carnegie Mellon

22

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {

 int newsize = ((len + 1) >> 1) << 1; // round up to even

 int oldsize = *p & -2; // mask out low bit

 *p = newsize | 1; // set new length

 if (newsize < oldsize)

 *(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 2 6

4 2 4

p

2 4

addblock(p, 4)

Carnegie Mellon

23

Implicit List: Freeing a Block

 Simplest implementation:
 Need only clear the “allocated” flag

 void free_block(ptr p) { *p = *p & -2 }

 But can lead to “false fragmentation”

4 2 4 2 4

free(p) p

4 4 2 4 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

24

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

 But how do we coalesce with previous block?

void free_block(ptr p) {

 *p = *p & -2; // clear allocated flag

 next = p + *p; // find next block

 if ((*next & 1) == 0)

 *p = *p + *next; // add to this block if

} // not allocated

4 2 4 2

free(p) p

4 4 2

4

6 2

logically
gone

Carnegie Mellon

25

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of blocks

 Allows us to traverse the “list” backwards, but requires extra space

 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size a Boundary tag
(footer)

4 4 4 4 6 4 6 4

Header

Carnegie Mellon

26

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

27

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Carnegie Mellon

28

m1 1

Constant Time Coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

Carnegie Mellon

29

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Carnegie Mellon

30

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

31

Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?

 What does that mean?

Carnegie Mellon

32

Summary of Key Allocator Policies
 Placement policy:

 First-fit, next-fit, best-fit, etc.

 Trades off lower throughput for less fragmentation

 Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
 When do we go ahead and split free blocks?

 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called

 Deferred coalescing: try to improve performance of free by deferring
coalescing until needed. Examples:

 Coalesce as you scan the free list for malloc

 Coalesce when the amount of external fragmentation reaches
some threshold

Carnegie Mellon

33

Implicit Lists: Summary
 Implementation: very simple
 Allocate cost:

 linear time worst case

 Free cost:
 constant time worst case

 even with coalescing

 Memory usage:
 will depend on placement policy

 First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

