Floating Point

15-213: Introduction to Computer Systems $4^{\text {th }}$ Lecture, May 26, 2015

Instructors:
Nathaniel Filardo and Greg Kesden

Today: Floating Point

■ Background: Fractional binary numbers
■ IEEE floating point standard: Definition
■ Example and properties
■ Rounding, addition, multiplication
■ Floating point in C
■ Summary

Fractional binary numbers

■ What is 1011.101_{2} ?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

Fractional Binary Numbers: Examples

- Value

$$
\begin{aligned}
& 5+3 / 4 \\
& 2+7 / 8 \\
& 1+7 / 16
\end{aligned}
$$

Representation
101.1100_{2}
010.1110_{2}
001.0111_{2}

■ Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

■ Limitation \#1

- Can only exactly represent numbers of the form $x / 2^{\mathrm{k}}$
- Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01]... 2
- $1 / 50.001100110011[0011] \ldots 2$
- 1/10 0.0001100110011[0011]...2

■ Limitation \#2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Today: Floating Point

■ Background: Fractional binary numbers
■ IEEE floating point standard: Definition
■ Example and properties
■ Rounding, addition, multiplication

- Floating point in C

■ Summary

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

■ Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

■ Numerical Form:

$$
(-1)^{S} M 2^{E}
$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

■ Encoding

- MSB s is sign bit s
- \exp field encodes E (but is not equal to E)
- frac field encodes \boldsymbol{M} (but is not equal to M)

Precision options

■ Single precision: 32 bits

s	\exp	frac	
1	8-bits	23-bits	

■ Double precision: 64 bits

s	\exp	frac

■ Extended precision: 80 bits (Intel only)

s	exp	frac	
1	15-bits	63 or 64-bits	

"Normalized" Values

$$
V=(-1)^{S} M 2^{E}
$$

■ When: $\exp \neq 000 \ldots 0$ and $\exp \neq 111 . . .1$

■ Exponent coded as a biased value: E = Exp - Bias

- Exp: unsigned value exp
- Bias $=2^{k-1}-1$, where k is number of exponent bits
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: $\boldsymbol{M}=1 . x x x \ldots x_{2}$

- xxx...x: bits of frac
- Minimum when frac=000... 0 ($M=1.0$)
- Maximum when frac=111... $1(M=2.0-\varepsilon)$
- Get extra leading bit for "free"

Normalized Encoding Example

$$
\begin{aligned}
& \mathrm{V}=(-1)^{\mathrm{S}} M 2^{E} \\
& E=\operatorname{Exp}-\text { Bias }
\end{aligned}
$$

■ Value: float $F=15213.0$;

- $15213_{10}=11101101101101_{2}$

$$
=1.1101101101101_{2} \times 2^{13}
$$

- Significand

$$
\begin{aligned}
& M=1 . \underline{1101101101101 ~}_{2} \\
& \text { frac }= \\
& \underline{1101101101101} 0000000000_{2}
\end{aligned}
$$

■ Exponent

E	$=$	13
Bias $=$	127	
Exp	$140=10001100_{2}$	

■ Result:

0	10001100	11011011011010000000000
s	exp	frac

Denormalized Values

$$
\begin{gathered}
\mathrm{V}=(-1)^{\mathrm{S}} M 2^{E} \\
E=1-\text { Bias }
\end{gathered}
$$

■ Condition: $\exp =000 . . .0$

■ Exponent value: $E=1$ - Bias (instead of $E=0$ - Bias)
$■$ Significand coded with implied leading 0 : $M=0 . x x x . . . x_{2}$

- xxx...x: bits of frac

■ Cases

- $\exp =000 \ldots 0$, frac $=000 \ldots 0$
- Represents zero value
- Note distinct values: +0 and -0 (why?)
- exp $=000 \ldots 0$, frac $\neq 000 \ldots 0$
- Numbers closest to 0.0
- Equispaced

Special Values

■ Condition: $\exp =111 . . .1$

■ Case: $\exp =111 \ldots 1$, frac $=000 \ldots 0$

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$

■ Case: $\exp =111 \ldots 1$, frac $\neq 000 \ldots 0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition

■ Example and properties
■ Rounding, addition, multiplication
■ Floating point in C
■ Summary

Tiny Floating Point Example

s	\exp	frac
1	4-bits	3-bits

■ 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

■ Same general form as IEEE Format

- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

Dynamic Range (Positive Only)

Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is $2^{3-1}-1=3$

s	\exp	frac
1	3-bits	2-bits

$■$ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

■ 6-bit IEEE-like format

- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

■ FP Zero Same as Integer Zero

- All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition

■ Example and properties
■ Rounding, addition, multiplication
■ Floating point in C
■ Summary

Floating Point Operations: Basic Idea

$\square \mathbf{x} \mathbf{t}_{\mathrm{f}} \mathrm{y}=$ Round $(\mathrm{x}+\mathrm{y})$
$■ \mathbf{x} \times_{f} y=$ Round ($\mathbf{x} \times \mathrm{y}$)

■ Basic idea

- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Rounding

■ Rounding Modes (illustrate with \$ rounding)

- Towards zero
- Round down ($-\infty$)
- Round up ($+\infty$)
- Nearest Even (default)

$\mathbf{\$ 1 . 4 0}$	$\mathbf{\$ 1 . 6 0}$	$\mathbf{\$ 1 . 5 0}$	$\mathbf{\$ 2 . 5 0}$	$\mathbf{- \$ 1}$
$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 1$
$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated

■ Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way-round up)
7.8850000	7.88	(Half way-round down)

Rounding Binary Numbers

■ Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position $=100 \ldots 2$

■ Examples

- Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$23 / 32$	10.00011_{2}	10.00_{2}	$(<1 / 2-$ down $)$	2
$23 / 16$	10.00110_{2}	10.01_{2}	(>1/2-up)	$21 / 4$
$27 / 8$	10.11100_{2}	11.00_{2}	($1 / 2-$ up)	3
$25 / 8$	10.10100_{2}	10.10_{2}	$(1 / 2-$ down $)$	$21 / 2$

FP Multiplication

- (-1$)^{\text {s1 }}$ M1 $2^{E 1} \times(-1)^{52}$ M2 $2^{E 2}$
- Exact Result: $(-1)^{\mathrm{s}} \mathrm{M}^{\mathbf{E}}{ }^{\mathrm{E}}$
- Sign s :
s1^s2
- Significand M :
$M 1 \times M 2$
- Exponent E:
$E 1+E 2$

■ Fixing

- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

■ Implementation

- Biggest chore is multiplying significands

Floating Point Addition

$-(-1)^{51} M 12^{E 1}+(-1)^{52}$ M2 $2^{E 2}$

- Assume E1 > E2

Get binary points lined up

- Exact Result: $(-1)^{s} M 2^{E}$

- Fixing
- If $M \geq 2$, shift M right, increment E
-if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
-Round M to fit frac precision

Mathematical Properties of FP Add

■ Compare to those of Abelian Group

- Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

- Associative?

No

- Overflow and inexactness of rounding
- $(3.14+1 e 10)-1 e 10=0,3.14+(1 e 10-1 e 10)=3.14$
- 0 is additive identity?

Yes

- Every element has additive inverse?
- Yes, except for infinities \& NaNs

Almost
■ Monotonicity

- $a \geq b \Rightarrow a+c \geq b+c$?

Almost

- Except for infinities \& NaNs

Mathematical Properties of FP Mult

■ Compare to Commutative Ring

- Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?

Yes
No

- Possibility of overflow, inexactness of rounding
- Ex: $(1 e 20 * 1 e 20) * 1 e-20=\inf , 1 e 20 *(1 e 20 * 1 e-20)=1 e 20$
- 1 is multiplicative identity?
- Multiplication distributes over addition?

Yes

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN
- Monotonicity
- $a \geq b \& c \geq 0 \Rightarrow a^{*} c \geq b^{*} c$?

Almost

- Except for infinities \& NaNs

Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition

■ Example and properties
■ Rounding, addition, multiplication
■ Floating point in C
■ Summary

Floating Point in C

■ C Guarantees Two Levels
-float single precision
-double double precision
■ Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round according to rounding mode

Floating Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

Assume neither
d nor \mathbf{f} is NaN

- $x==$ (int)(float) x
- $x==$ (int)(double) x
- $f==$ (float)(double) f
- $\mathrm{d}==$ (double)(float) d
- $\mathrm{f}==-(-\mathrm{f})$;
- $2 / 3==2 / 3.0$
- $\mathrm{d}<0.0 \quad \Rightarrow \quad\left(\left(\mathrm{~d}^{*} 2\right)<0.0\right)$
- $d>f \quad \Rightarrow \quad-f>-d$
- $d^{*} d>=0.0$
- $(d+f)-d==f$

Summary

■ IEEE Floating Point has clear mathematical properties

- Represents numbers of form $\mathrm{M} \times \mathbf{2}^{\mathrm{E}}$

■ One can reason about operations independent of implementation

- As if computed with perfect precision and then rounded

■ Not the same as real arithmetic

- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

More Slides

Creating Floating Point Number

■ Steps

- Normalize to have leading 1
- Round to fit within fraction

s	\exp	frac
1	4-bits	3-bits

- Postnormalize to deal with effects of rounding

■ Case Study

- Convert 8-bit unsigned numbers to tiny floating point format Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

■ Requirement

s	\exp	frac
1	4-bits	3-bits

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
- Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result
Round bit: $1^{\text {st }}$ bit removed

■ Round up conditions

- Round = 1, Sticky = $1 \rightarrow>0.5$
- Guard = 1, Round =1, Sticky = $0 \rightarrow$ Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

■ Issue

- Rounding may have caused overflow
- Handle by shifting right once \& incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	$1.000 / 6$	64

Interesting Numbers

\{single,double\}

Description

■ Zero
■ Smallest Pos. Denorm.

- Single $\approx 1.4 \times 10^{-45}$
- Double $\approx 4.9 \times 10^{-324}$
- Largest Denormalized
- Single $\approx 1.18 \times 10^{-38}$
- Double $\approx 2.2 \times 10^{-308}$

■ Smallest Pos. Normalized

- Just larger than largest denormalized

■ One

- Largest Normalized
- Single $\approx 3.4 \times 10^{38}$
- Double $\approx 1.8 \times 10^{308}$
00... 01 00... 00
$1.0 \times 2^{-\{126,1022\}}$
$\exp \quad$ frac Numeric Value
00... 00 00... 00 0.0
$00 \ldots 00 \quad 00 \ldots 01 \quad 2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
$00 . .00 \quad 11 . . .11 \quad(1.0-\varepsilon) \times 2^{-\{126,1022\}}$
01... 11 00... 00
1.0
11... 10 11... 11
$(2.0-\varepsilon) \times 2^{\{127,1023\}}$

