MICHAEL’S FAIRLY SATISFACTORY
RECITATION SLIDES

(MOSTLY ADAPTED FROM ANITA’S
SUPER AWESOME RECITATION

O SLIDES)

15/18-213: Introduction to Computer Systems

o Dynamic Memory Allocation

UPDATES

Shell Lab due tonight
Midterm next week
Malloc Lab due Tuesday, July 23, 2013

WELCOME TO MALLOC

Dynamic Memory

Allocation Mal = bad
Managing Free Blocks
Finding a Free Block
Splitting Blocks

Allocating/ Freeing
Blocks

Malloc Lab Tips

Loc =place

Bad Place™

REMEMBER THIS?

Rubber Duck Debugging

DYNAMIC MEMORY

Programmers use
dynamic memory User stack

allocators (1.e. malloc) ‘
to acquire memory f
For sizes only known Heap (via malloc)
at runtime

«Top of heap
(brk ptr)

Uninitialized data (.bss)

Dynamic memory
allocators manage an

area of process virtual
memory known as the o
heap

Initialized data (.data)

Program text (.text)

MANAGING FREE BLOCKS

Method 1: Implicit list using length— links all blocks

5 4 6 2

Method 2: Explicit list among the free blocks using

pointers
5| - 4 e 2

Additionally: Segregated free list
Different free lists for different size classes

Additionally: Blocks sorted by size

Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

COMPARING MANAGEMENT FORMATS

Implicit Free List Explicit Free List

1 word 1 word 1 word
— — T
Size a Size a Size a
Next
Payload Payload and Prev
padding
Optional
padding Size a Size a
Format of allocated Allocated blocks Free blocks

and free blocks

VISUALIZING EXPLICIT FREE LISTS

o Logically:

o Physically (any order):

—
v

/ Forward (next) links

4 5 44 4 6 7 < 6| 4 4 04"

4

Back (prev) links

SEGREGATED FREE LISTS

Each size class of blocks has 1ts own free list
May also be called a “bucket”

1-2

3 —>

4

5-8

9-inf

Often have separate classes for each small size
For larger sizes: One class for each power of two

FINDING FREE BLOCKS

First fit:
Search from the beginning
Choose the first free block that fits

Can take linear time depending on the total number
of blocks in the list

Can cause “splinters” at the beginning of list
Many small free blocks left at the beginning

FINDING FREE BLOCKS

Next fit

Searches starting where previous search finished
Often faster than first fit

Avoids re-scanning blocks of the wrong size
Some research suggests that fragmentation is worse
K&R has an example of this

FINDING FREE BLOCKS

Best fit

Chooses the “best” fitting free block
Fits with the fewest bytes left over

Keeps fragments small
Usually improves memory utilization

Will typically run slower than first fit
If the best block 1s larger than we need, may split it

FINDING FREE BLOCKS OVERVIEW

3 Methods
First Fit
Next Fit
Best Fit

What if no blocks are large enough?

Extend the heap
o Use brk() or sbrk() system calls

o Malloc Lab: use mem_sbrk()
o Allocates more bytes to the end of the heap; high overhead
o sbrk(0) returns a pointer to top of the current heap

Key: Use what you need, save the rest as a free block

SPLITTING BLOCKS

What happens if the block we have 1s too big?

Split it up

Key: Use what you need, save the rest as a free block
Implicit lists

Correct size maintains list
Explicit lists

(If segregated) determine correct bucket size

Follow insertion policy

PROPERLY FREEING BLOCKS

Simplest implementation:

Need only clear the “allocated” flag
o void free_block(ptr p) { *p = *p & -2 }

...But can lead to “false fragmentation”

ol ("N

free(p)

4 4 4 2 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be
able to find it

COALESCING

Combining blocks in nearby memory

Implicit lists

Look backwards/ forwards using block sizes.

Explicit lists

Look backwards/ forwards using block sizes

Seg. List: Use the new block size to find the bucket

Block being
freed

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Allocated Free Allocated Free

INSERTION POLICY

Where should freed blocks go?

LIFO (last-in-first-out)
Insert freed block at the beginning of the free list
Pro: Simple and constant time

Con: Studies suggest fragmentation is worse than
address ordered

Address-ordered

Keep freed blocks list sorted in address order

Pro: Studies suggest fragmentation is lower than
LIFO

Con: Requires searching

ABOUT MALLOC LAB

You need to implement the following functions:
int mm_init(void);

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);
void *calloc (size_t nmemb, size_t size);
void mm_checkheap(int);

Scored on efficiency and throughput
Cannot call system memory functions
Use helper functions

Consider version control

DESIGN QUESTIONS (IN NO ORDER)

How do we efficiently manage freed blocks?
When should we coalesce?

What are the 1ideal bucket sizes?

How can we increase throughput? Latency?
Which search algorithm is better?

What insertion policy should I use?

HEAP CHECKER

void mm_checkheap(int)
Write it early; update it with your implementation

Ensures the heap 1s “sane”
o Everything should either be allocated or listed
o Your pointers are pointing to the correct blocks

Look over lecture notes on garbage collection
o Particularly mark & sweep

This function 1s meant to be correct, not efficient

KEYWORDS

inline
“Copies” function code into location of each function call
Avoids overhead of a function call (once assembled)
Can often be used 1n place of macros
Strong type checking and input handling, unlike macros

static
Pretty much like static variables
Resides in a single place in memory

Limits scope of function to the current file
Should use this for helper functions only called locally
Avoids polluting namespace

static 1nline
Combined effect

DEBUGGING

Using printf, assert, etc. only in debug mode
Comment out #define for the else case

#define DEBUG

#ifdef DEBUG
define dbg_printf(...) printf(_VA_ARGS__)
define dbg_assert(...) assert(_VA_ARGS__)
define dbg(...) __VA_ARGS___

#else
define dbg_printf(...)
define dbg_assert(...)
define dbg(...)

#endif

DEBUGGING

Valgrind
Powerful debugging and analysis technique
Rewrites text section of executable object file
Can detect all errors as a “debugging malloc”

Can also check each individual reference at runtime
Bad pointers
Overwriting

Referencing outside of allocated block

GDB
Pro Tip: The O2 flag is used in the Makefile

May give unexpected results when using GDB

VERSION CONTROL

Warning: You may The Messy Circuit Analogy
have to rewrite your

malloc once or twice 1n
the next week

Use version control so
you don’t lose track

Here’s a good
reference on (it

http://gitref.org/creating/
http://gitref.org/creating/

COMMON MISCONCEPTIONS

“Global data structures” i1s not the same as
declaring types

Use mem_sbrk to get space for your data structures

typedef struct {
int X;
int y;

} point;

Vs. point a = {5, 6};

Casting 1s your friend in this lab
Data from mem_sbrk is like any other data

The driver resets the heap by calling mm_init
May require you to update some of your pointers

64 bit addresses, but the heap < 232 bytes

Use this information as you see fit

GETTING STARTED

Read the 32 bit implicit list in CS:APP

Understand the macros, then steal them

Don’t copy and paste from the CS:APP website
Typing it yourself will give you epiphanies
The coalescing code provided 1s great

Implement a 64 bit malloc

Super naive and inefficient may be a good start

Implement mm_checkheap for this heap pattern

GETTING MORE POINTS

Implicit list malloc 1s worth no credit
Last checked 1t was worth ~40 points

Explicit free list 1s expected
Gets you to the ~80 point range

Update from explicit to segregated free lists
Puts you in the ~90 point range

FINAL WORDS FROM PREVIOUS YEARS

Write mm_checkheap
Write mm_checkheap well

Write coalescing to make bugs more apparent,
then fix bugs using mm_checkheap

Start now
You'll be spending a lot of time pointer chasing

Accelerate neutrinos past the speed of light,
enabling you to start three days ago

Good luck!

QUESTIONS AND CREDITS SLIDE

o Rubber Duck
o (1t Reference

o Some picture of a messy circuit

http://jetlinepromo.com/media/catalog/product/r/d/rd206_y.jpg
http://gitref.org/creating/
http://denethor.wlu.ca/common/images/messywires.jpg

