
MICHAEL’S FAIRLY SATISFACTORY

RECITATION SLIDES

(MOSTLY ADAPTED FROM ANITA’S

SUPER AWESOME RECITATION

SLIDES)
15/18-213: Introduction to Computer Systems

Dynamic Memory Allocation

UPDATES

 Shell Lab due tonight

 Midterm next week

 Malloc Lab due Tuesday, July 23, 2013

WELCOME TO MALLOC

 Dynamic Memory

Allocation

 Managing Free Blocks

 Finding a Free Block

 Splitting Blocks

 Allocating/ Freeing

Blocks

 Malloc Lab Tips

Mal = bad

Loc = place

Bad Place™

REMEMBER THIS?

Rubber Duck Debugging

DYNAMIC MEMORY

 Programmers use

dynamic memory

allocators (i.e. malloc)

to acquire memory

 For sizes only known

at runtime

 Dynamic memory

allocators manage an

area of process virtual

memory known as the

heap

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap

 (brk ptr)

MANAGING FREE BLOCKS

 Method 1: Implicit list using length– links all blocks

 Method 2: Explicit list among the free blocks using
pointers

 Additionally: Segregated free list

 Different free lists for different size classes

 Additionally: Blocks sorted by size

 Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

5 4 2 6

5 4 2 6

COMPARING MANAGEMENT FORMATS

Implicit Free List Explicit Free List

Size

Format of allocated

and free blocks

Payload

a

Optional

padding

1 word

Size

Payload and

padding

a

Size a

Size a

Size a

Next

Prev

Allocated blocks Free blocks

1 word 1 word

VISUALIZING EXPLICIT FREE LISTS

 Logically:

 Physically (any order):

A B C

4 4 4 4 6 6 4 4 4 4

Forward (next) links

Back (prev) links

A B

C

SEGREGATED FREE LISTS

 Each size class of blocks has its own free list

 May also be called a “bucket”

 Often have separate classes for each small size

 For larger sizes: One class for each power of two

1-2

3

4

5-8

9-inf

FINDING FREE BLOCKS

 First fit:

 Search from the beginning

 Choose the first free block that fits

 Can take linear time depending on the total number

of blocks in the list

 Can cause “splinters” at the beginning of list

 Many small free blocks left at the beginning

FINDING FREE BLOCKS

 Next fit

 Searches starting where previous search finished

 Often faster than first fit

 Avoids re-scanning blocks of the wrong size

 Some research suggests that fragmentation is worse

 K&R has an example of this

FINDING FREE BLOCKS

 Best fit

 Chooses the “best” fitting free block

 Fits with the fewest bytes left over

 Keeps fragments small

 Usually improves memory utilization

 Will typically run slower than first fit

 If the best block is larger than we need, may split it

FINDING FREE BLOCKS OVERVIEW

 3 Methods

 First Fit

 Next Fit

 Best Fit

 What if no blocks are large enough?

 Extend the heap

 Use brk() or sbrk() system calls

 Malloc Lab: use mem_sbrk()

 Allocates more bytes to the end of the heap; high overhead

 sbrk(0) returns a pointer to top of the current heap

 Key: Use what you need, save the rest as a free block

SPLITTING BLOCKS

 What happens if the block we have is too big?

 Split it up

 Key: Use what you need, save the rest as a free block

 Implicit lists

 Correct size maintains list

 Explicit lists

 (If segregated) determine correct bucket size

 Follow insertion policy

PROPERLY FREEING BLOCKS

 Simplest implementation:

 Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

 ...But can lead to “false fragmentation”

There is enough free space, but the allocator won’t be
able to find it

4 2 4 2 4

free(p) p

4 4 2 4 2

malloc(5) Oops!

COALESCING

 Combining blocks in nearby memory

 Implicit lists

 Look backwards/ forwards using block sizes.

 Explicit lists

 Look backwards/ forwards using block sizes

 Seg. List: Use the new block size to find the bucket

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being

freed

Case 1 Case 2 Case 3 Case 4

INSERTION POLICY

 Where should freed blocks go?

 LIFO (last-in-first-out)

 Insert freed block at the beginning of the free list

 Pro: Simple and constant time

 Con: Studies suggest fragmentation is worse than

address ordered

 Address-ordered

 Keep freed blocks list sorted in address order

 Pro: Studies suggest fragmentation is lower than

LIFO

 Con: Requires searching

ABOUT MALLOC LAB

 You need to implement the following functions:
int mm_init(void);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);
void *calloc (size_t nmemb, size_t size);
void mm_checkheap(int);

 Scored on efficiency and throughput

 Cannot call system memory functions

 Use helper functions

 Consider version control

DESIGN QUESTIONS (IN NO ORDER)

 How do we efficiently manage freed blocks?

 When should we coalesce?

 What are the ideal bucket sizes?

 How can we increase throughput? Latency?

 Which search algorithm is better?

 What insertion policy should I use?

HEAP CHECKER

 void mm_checkheap(int)

 Write it early; update it with your implementation

 Ensures the heap is “sane”

 Everything should either be allocated or listed

 Your pointers are pointing to the correct blocks

 Look over lecture notes on garbage collection

 Particularly mark & sweep

 This function is meant to be correct, not efficient

KEYWORDS

 inline

 “Copies” function code into location of each function call

 Avoids overhead of a function call (once assembled)

 Can often be used in place of macros

 Strong type checking and input handling, unlike macros

 static

 Pretty much like static variables

 Resides in a single place in memory

 Limits scope of function to the current file

 Should use this for helper functions only called locally

 Avoids polluting namespace

 static inline

 Combined effect

DEBUGGING

 Using printf, assert, etc. only in debug mode

 Comment out #define for the else case

#define DEBUG

#ifdef DEBUG
 # define dbg_printf(...) printf(__VA_ARGS__)
 # define dbg_assert(...) assert(__VA_ARGS__)
 # define dbg(...) __VA_ARGS__
#else
 # define dbg_printf(...)
 # define dbg_assert(...)
 # define dbg(...)
#endif

DEBUGGING

 Valgrind

 Powerful debugging and analysis technique

 Rewrites text section of executable object file

 Can detect all errors as a “debugging malloc”

 Can also check each individual reference at runtime

 Bad pointers

 Overwriting

 Referencing outside of allocated block

 GDB

 Pro Tip: The O2 flag is used in the Makefile

 May give unexpected results when using GDB

VERSION CONTROL

 Warning: You may

have to rewrite your

malloc once or twice in

the next week

 Use version control so

you don’t lose track

 Here’s a good

reference on Git

The Messy Circuit Analogy

http://gitref.org/creating/
http://gitref.org/creating/

COMMON MISCONCEPTIONS

 “Global data structures” is not the same as
declaring types

 Use mem_sbrk to get space for your data structures

 Casting is your friend in this lab
 Data from mem_sbrk is like any other data

 The driver resets the heap by calling mm_init

 May require you to update some of your pointers

 64 bit addresses, but the heap ≤ 232 bytes

 Use this information as you see fit

typedef struct {
 int x;
 int y;
} point;

Vs. point a = {5, 6};

GETTING STARTED

 Read the 32 bit implicit list in CS:APP

 Understand the macros, then steal them

 Don’t copy and paste from the CS:APP website

 Typing it yourself will give you epiphanies

 The coalescing code provided is great

 Implement a 64 bit malloc

 Super naïve and inefficient may be a good start

 Implement mm_checkheap for this heap pattern

GETTING MORE POINTS

 Implicit list malloc is worth no credit

 Last checked it was worth ~40 points

 Explicit free list is expected

 Gets you to the ~80 point range

 Update from explicit to segregated free lists

 Puts you in the ~90 point range

FINAL WORDS FROM PREVIOUS YEARS

 Write mm_checkheap

 Write mm_checkheap well

 Write coalescing to make bugs more apparent,

then fix bugs using mm_checkheap

 Start now

 You’ll be spending a lot of time pointer chasing

 Accelerate neutrinos past the speed of light,

enabling you to start three days ago

 Good luck!

QUESTIONS AND CREDITS SLIDE

 Rubber Duck

 Git Reference

 Some picture of a messy circuit

http://jetlinepromo.com/media/catalog/product/r/d/rd206_y.jpg
http://gitref.org/creating/
http://denethor.wlu.ca/common/images/messywires.jpg

