
Michael’s Fairly Satisfactory
Recitation slides
(Mostly borrowed from Anita's
Super Awesome Slides)

15/18-213: Introduction to
Computer Systems
Processes and Signals
June 25, 2013

An “Hour” of Fun Ahead of Us

 Basics of everything
 Processes

 Birth, Life, Death, Reap
 Signals
 Brief I/O
 Shell Lab

Exceptional Control Flow

 A way to react to changes in system state
 As opposed to program state

 Types
 Exceptions
 Process Context Switch
 Signals
 Nonlocal jumps

Flavors of Exceptions

 Asynchronous
 I/O interrupts
 Reset interrupts

 Synchronous
 Traps
 Faults
 Aborts

Programs? What are those?

 Specification
 Written according to this to tell users what it does

 Data and instructions stored in an executable
binary file
 Tells a computer what to do

 Binary file is static
 No state, just instructions

And Then There Were Processes!

 An instance of a program in execution
 Ubiquitous on multitasking systems
 A fundamental abstraction provided by the OS

 Single thread of execution (linear control flow)
 Until you have more threads (more fun ahead..)

 Full, private memory space and registers
 Various other states

 Open files, private address spaces, etc.

Basics of Process Control

 Four basic process control functions
 fork()
 exec()

 Variations exist

 exit()
 wait()

 Variations exist

 Standard on all Unix-based systems
 CS:APP provides Fork(), Execve(), Wait(), etc.

 Error-handling wrappers provided for your use

Birth: fork()

 Creates demon spawn
 OS creates an exact duplicate of parent’s state

 Virtual address space (including heap and stack)
 Registers, except the return value (%eax)
 File descriptors (files are shared)

 Result: equal but separate state
 Returns: 0 to child process, child’s PID to parent
 Can run execution in an arbitrary order

 Either child/parent may run first after fork()

Life: exec()

 Replaces the current process’s state and context
 This is how you run programs

 Replace current running memory image with that of
the new program

 Set up stack
 Start execution at the entry point

 Newly loaded program’s perspective: as if the
previous program has not been run before
 On success, it does not return to the old program

 A family of functions
 For details: man 3 exec

Death: exit()

 Terminates a process
 OS frees resources used by exited process

 Heap, open file descriptors, etc.
 But not exit status!

 The process becomes a zombie
 Technical terminology
 Remains in process table to await its reaping

 Zombies are reaped when their parents read
their exit status
 Done by init process if the parent has died
 Then the PID can be reused~ :D

Reap: wait()

 Waits for a child process to change state
 If a child has terminated, this allows the parent

to “reap” the child
 Frees all resources
 Collects the exit status
 Child is “fully” gone D:

 Variations exists
 Details: man 2 wait

Which Runs First?

pid_t child_pid = fork();

if (child_pid == 0) {

/* only child prints this */
printf(“Child!\n”);
exit(0);

} else {
printf(“Parent!\n”);

}

 What are the possible
outcomes?
 Child!

Parent!
 Parent!

Child!
 How can we get the

child to always print
first?

Which Runs First?

int status;

pid_t child_pid = fork();

if (child_pid == 0) {

/* only child prints this */
printf(“Child!\n”);
exit(0);

} else {
waitpid(child_pid, &status, 0);

printf(“Parent!\n”);

}

 Use waitpid() to wait
until a child has
terminated
 Exit status can be

inspected using the
status variable here

 Only one outcome
 Child!

Parent!

Using execve()

int status;

pid_t child_pid = fork();

char* argv[] = {“ls”, “-l”, NULL};

extern char **environ;

if (child_pid == 0){

/* only child comes here */

execve(“/bin/ls”, argv, environ);

/* will child reach here? */

} else {

waitpid(child_pid, &status, 0);

}

 argv
 Argument list
 Convention: argv[0] is

the name of the
executable

 execve
 const char *filename
 char *argv[]
 char const envp[]

 environ provided by
unistd.h

 Can also specify your
own

Process States

 Running
 Executing instructions on the CPU
 Number bounded by number of CPU cores

 Runnable
 Waiting to run

 Blocked
 Waiting for an event
 Not runnable

 Zombie
 Terminated, not yet reaped

What are these “Signal” things?

 Primitive form of inter-process communication
 Notifies a process of an event
 Asynchronous with normal execution
 Comes in several flavors

 man 7 signal
 Sent in various ways

 ctrl +c, ctrl+z
 kill()
 kill utility

Signals

 Are non-queuing
 Options for handling signals

 Ignore
 Catch and run signal handler
 Terminate (and optionally dump core)
 Details: man sigaction

 Blocking signals
 sigprocmask()

 Waiting for signals
 sigsuspend()

 Can’t modify behavior of SIGKILL and SIGSTOP

Signal Handlers

 Can be installed to run when a particular signal
is received
 void handler (int signum) { …. }

 Separate flow of control in the same process
 Resumes normal flow of control upon returning
 Can be called anytime when the appropriate

signal is fired

Concurrency Bugs
void handler(int sig)

{

 pid_t pid;

/* Reap a zombie child */

 while ((pid = waitpid(-1,NULL,WNOHANG)) > 0)

 deletejob(pid);

 if (errno != ECHILD)

 unix_error("waitpid error");

}

 What could happen between
fork() and addjob()?
 SIGCHLD

 How would you handle it?
 Block in the right places

int main(int argc, char **argv)

{

 int pid;

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 /* Child process */

 if ((pid = Fork()) == 0) {

 Execve("/bin/date", argv, NULL);

 }

 /* Parent process */

 addjob(pid);

 }

 exit(0);

}

I/O

 Four basic operations
 open()
 close()
 read()
 write()

 What’s a file descriptor?
 Returned by open()
 Some positive value, or -1 to denote error
 int fd = open(“/path/to/file”, O_RDONLY);

File Descriptors

 Every process starts with these 3 by default
 0 – STDIN
 1 – STDOUT
 2 – STDERR

 You can call close() on them…..
 But you that’s probably not what you want

 Every process gets its own file descriptor table
 All processes share open file tables
 All processes share v-node tables

 Contains the stat structure with info about a file

Shell Lab

 Race conditions
 Creating processes
 Reaping zombies
 Job control synchronization
 I/O redirection
 Managing signals
 And more!

Shell Lab Tools

 ./runtrace
 Runs traces on your chosen shell (defaults to tsh)
 Execute without arguments to see usage

 ./tshref
 Reference shell – experiment, run programs, etc.

 ./sdriver
 Used to run traces multiple times
 Execute without arguments to see usage

Plan of Attack

 As always, read the handout
 Bundles of hints in there

 If there is one chapter to read from the textbook..
 CS:APP: Chapter 8 – Exceptional Control Flow
 Tons of examples and explanations on how to

synchronize your processes
 They’re pretty much giving you the answers…
 At least read the example code

 Suggested order: Job control/ process creation,
signals and synchronization, I/O redirection

 Unit test by hand
 Don’t jump into the sdriver or runtrace too fast

Hints

 CS:APP p.735 and p.757
 Basic eval and job management starter codes
 Great way to start the lab
 Code links in the credits

 Read the starter code, understand what it wants
 There are hints in there too

 Don’t use sleep() to solve synchronization issues
 Definitely don’t use it to make a child/parent run first
 Google or man pages for sigsuspend()

Style

 Check return values
 You’re dealing with system calls; they matter a lot

 Provided code is a good example of what you
should do
 Relevant comments and explanations of design

 Find your race conditions

This Slide Intentionally Filled

Questions?

 CS:APP Error Handling Wrappers and Header
 CS:APP Code Samples

http://csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
http://csapp.cs.cmu.edu/public/ics2/code/include/csapp.h
http://csapp.cs.cmu.edu/public/code.html

	Slide 1
	An “Hour” of Fun Ahead of Us
	Exceptional Control Flow
	Flavors of Exceptions
	Programs? What are those?
	And Then There Were Processes!
	Basics of Process Control
	Birth: fork()
	Life: exec()
	Death: exit()
	Reap: wait()
	Which Runs First?
	Which Runs First?
	Using execve()
	Process States
	What are these “Signal” things?
	Signals
	Signal Handlers
	Concurrency Bugs
	I/O
	File Descriptors
	Shell Lab
	Shell Lab Tools
	Plan of Attack
	Hints
	Style
	This Slide Intentionally Filled

