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UP TO SPEED YET?

 Buflab

 Due tonight, 11:59 PM EDT

 Cachelab

 Out tonight, 11:59 PM EDT

 Due Tuesday, June 25, 2013, 11:59 PM

 This will be the last one week lab

 But the labs don’t get any easier



THIS AND THAT AND WHAT’S TODAY

 Exam Talk

 Alignment

 Memory Organization

 Caching

 Buzzword: locality

 Cache organization

 Cachelab

 Part A – Implement a (hardware) cache simulator

 Part B – Efficient matrix transpose

 “Bro, do you even C?” – helpful C stuff



MOTIVATION: WHY BOTHER WITH THE ECES?



STRUCTS, WHAT ARE THEY?

 An object with sets of (related) values that can be 

passed around together

 Values not necessarily contiguous in memory

 Each object may have a different alignment rule

 There is a constant offset from the beginning of the 

struct



ALIGNMENT OF STRUCTS

 Entire struct aligns according to the largest 

alignment constraint of its member

 Must be multiple of K (largest alignment 

requirement)

 Compilers enforce this; different alignments 

depending

 Overall structure length a multiple of K

 Optimize length by declaring largest elements first



EXAMPLE OF A STRUCT (FROM LECTURE)

struct S1 {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24



WHAT ARE UNIONS?

 A place in memory used to store data types

 Unlike structs, union elements are not placed 

“next to each other in memory”

 Rather they are placed “on top”

 Size is decided by the largest element

 Only one field used at a time

 Each write to an element overwrites some part of 

another

 This class does not deal with unions very much



UNION EXAMPLE (FROM LECTURE)

union U1 {
char c;
int i[2];
double v;

} *up;

c

i[0] i[1]

v

up+0 up+4 up+8



STRUCTS ON EXAMS

struct stats { 
int num_views;
short sum;

};

Goal: Align struct
system_f according to a 

64-bit Linux system

0 1 2 3 4 5 6 7 8 9 a b c d e f

a X X X X X X X b b b b b b b b

c c c c c c c c c c c c X X X X

d d d d d d d d e e e e e e X X

f f X X X X X X

struct system_f {
char a;
int* b;
int c[3];
long d;
struct stats e;
short f;

};



MEMORY HIERARCHY (FROM LECTURE)
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SRAM VS DRAM

 SRAM

 Faster (L1 Cache: 1 CPU cycle)

 Smaller (L1 in kilobytes; L2 in megabytes)

 More expensive and “energy-hungry”

 DRAM (Main memory)

 Relatively slower (hundreds of CPU cycles)

 Larger (Gigabytes)

 Cheaper



HARDWARE INSIGHT

 Picture from 18-447 slides



LOCALITY

 Temporal locality

 Recently referenced items are likely 

to be referenced again in the near future

 After accessing address X in memory, save the bytes 

in cache for future access

 Spatial locality

 Items with nearby addresses tend 

to be referenced close together in time

 After accessing address X, save the block of memory 

around X in cache for future access



GENERAL CACHING (FROM LECTURE)
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ADDRESS DIVISION IN CACHES

 On the Shark machines, addresses are 64-bits

 Dividing a memory address

 Block offset:  b bits

 Set index:  s bits

 Tag bits: address size – b – s



CACHE PARAMETERS

 A cache is a set of S = 2s cache sets

 A cache set is a set of E cache lines

 E is called associativity

 If E = 1, the cache is “direct-mapped”

 Each cache line stores a block

 Each block has B = 2b bytes

 Total capacity C = S * B * E 



VISUAL CACHE TERMINOLOGY
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set

index

block

offset

data begins at this offset



CACHE LOOKUP STEPS

 Divide address into parts 

 Block offset: Low b bits 

 Set number: Next s bits 

 Tag: Remaining ((address size) – b – s) bits 

 Check each line in a set, compare tags 

 If one matches and it’s valid, it’s a hit! 

 If none match, it’s a miss. Add block to cache 

 If there’s no room, evict a line from the set 



CACHE EVICTION

 Observations

 Each address block has a specified set it belongs to

 Each block has a specific tag for that set

 If we need to add items to a set and it’s full, we have 

to evict via an eviction policy

 Least-recently used (LRU)

 Main eviction policy for 15-213

 Evict (remove) the least recently used block from the 

cache to make room for the next block



CACHE LAB PART A

 Cache Simulator

 Implement for variable s, b, and E values

 Values read in from a trace file (at runtime)

 Least Recently Used (LRU) Policy

 Cache Simulator != Cache

 This simulator does NOT store memory contents

 Only performs lookups/ evictions for various addresses

 We do NOT care about block offsets here

 Your goal: count the number of hits, misses, and 

evictions

 Read addresses from files and return these numbers



GENERAL SIMULATOR DESIGN HINTS

 A cache is just 2D array of cache lines:

 struct cache_line cache[S][E];

 S = 2s is the number of sets

 E is associativity

 Each cache_line has:

 Valid bit

 Tag

 LRU “counter”



ANITA’S FAVORITE DATA STRUCTURE

 Linked lists

 “The only data structure you will ever need”

 (Heavily) used in cache and malloc lab

 A lesson on linked list in the credits page



FOOD FOR THOUGHT/ OTHER DESIGNS

 How necessary is the LRU counter?

 We have the power to insert nodes wherever we want

 So why use a counter?

 As a C programmer, implementing a linked list 

should be second nature

 The same deal every time

 Pointers to each node

 Traversal helper functions

 Checking invariants



CACHELAB PART B

 Efficient matrix transpose

 Goal: Increasing locality via blocking

 Involves careful analysis of cache element placement



CACHELAB PART B

 Cache:

 1 kilobytes of cache

 Directly mapped (E=1)

 Block size is 32 bytes (b=5)

 S = 32 sets (s=5)

 Test Matrices:

 32 x 32,  64 x 64,  61 x 67

 You only need to optimize for these sizes



“BRO, DO YOU EVEN C?”

 In this section:

 Warnings are errors

 Headers

 Useful C functions



WARNINGS ARE ERRORS

 Strict compilation flags

 Avoid potential errors that are hard to debug

 Learn good habits from the beginning

 Add “-Werror” to your compilation flags

 DO NOT ignore the compiler errors



WHAT ABOUT HEADERS?

 Remember to include files that we will be using 

functions from

 If function declaration is missing

 Find corresponding header files

 unix> man function-name

 Skim the man pages, they’ll tell you what you need to know



FUNCTION 1: GETOPT

 getopt automates parsing elements on the unix

command line

 Typically called in a loop to retrieve arguments

 Use a switch statement to handle options

 Returns -1 when there are no more arguments

 Must include the header file unistd.h



FUNCTION 1: GETOPT USAGE

 Switch statement used on the (local) variable  

holding the return value from getopt

 Each command line input can be handled separately

 optarg – Points to the value of the option argument

 This is set by the getopt function

 Food for thought

 How do we handle invalid inputs?



FUNCTION 1: GETOPT EXAMPLE

 Suppose we had an executable called “foo”

 Example call from shell: unix> ./foo –x 1

 Next slide: Parsing the argument to the x option

 Notice: We passed in an int which is read as a char *

 We use atoi to convert the string to an int



FUNCTION 1: GETOPT EXAMPLE CONT.

int main(int argc, char** argv){
int opt, x;

/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:"))){

/* determine which argument it’s processing */
switch(opt) { 

case 'x':
x = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}



FUNCTION 2: FSCANF

 The fscanf function is just like scanf/sscanf

 But it can specify a stream to read from

 scanf always reads from stdin

 sscanf reads from a string

 Parameters: 

 File pointer

 Format string with information on how to read file

 Variable number of pointers to with locations for 

storing data from file

 Typically use in a loop until it hits the end of file

 fscanf is useful in reading from the trace files



FUNCTION 2: FSCANF EXAMPLE

FILE *pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int x, y;
char c;

/* read two ints and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){

// Do stuff
}

fclose(pFile); // remember to close file when done



FUNCTION 3 AND 4: MALLOC/FREE

 Use malloc to allocate memory on the heap

 Returns a pointer to location in memory 

 Always free what you malloc

 Or you’ll suffer from memory leaks

 Example usage:
 int *pointer = malloc( sizeof(int) );

 free(pointer);

 DO NOT free memory you didn’t allocate

 This includes double free-ing



STYLE AND TIPS FOR LIFE

 Check for failures and errors ALWAYS

 Functions don’t always succeed

 What happens when a system call fails?

 Common cases of failure:

 Not checking the return of malloc

 Not handling invalid inputs

 Generally, not checking returns of functions



I STOLE FROM THESE PLACES

 Upside down CPU Cache 

Pyramid

 Memory Bank 

Organization from 18-447

 Wikipedia: Linked Lists

 C Linked List Example

 getopt from GNU

 fscanf from CPlusPlus.com

http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/
http://www.cplusplus.com/reference/cstdio/fscanf/

