
ANITA’S SUPER AWESOME

RECITATION SLIDES
15/18-213: Introduction to Computer Systems

Memory and Caches, 18 Jun 2013

Anita Zhang, Section M

UP TO SPEED YET?

 Buflab

 Due tonight, 11:59 PM EDT

 Cachelab

 Out tonight, 11:59 PM EDT

 Due Tuesday, June 25, 2013, 11:59 PM

 This will be the last one week lab

 But the labs don’t get any easier

THIS AND THAT AND WHAT’S TODAY

 Exam Talk

 Alignment

 Memory Organization

 Caching

 Buzzword: locality

 Cache organization

 Cachelab

 Part A – Implement a (hardware) cache simulator

 Part B – Efficient matrix transpose

 “Bro, do you even C?” – helpful C stuff

MOTIVATION: WHY BOTHER WITH THE ECES?

STRUCTS, WHAT ARE THEY?

 An object with sets of (related) values that can be

passed around together

 Values not necessarily contiguous in memory

 Each object may have a different alignment rule

 There is a constant offset from the beginning of the

struct

ALIGNMENT OF STRUCTS

 Entire struct aligns according to the largest

alignment constraint of its member

 Must be multiple of K (largest alignment

requirement)

 Compilers enforce this; different alignments

depending

 Overall structure length a multiple of K

 Optimize length by declaring largest elements first

EXAMPLE OF A STRUCT (FROM LECTURE)

struct S1 {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

WHAT ARE UNIONS?

 A place in memory used to store data types

 Unlike structs, union elements are not placed

“next to each other in memory”

 Rather they are placed “on top”

 Size is decided by the largest element

 Only one field used at a time

 Each write to an element overwrites some part of

another

 This class does not deal with unions very much

UNION EXAMPLE (FROM LECTURE)

union U1 {
char c;
int i[2];
double v;

} *up;

c

i[0] i[1]

v

up+0 up+4 up+8

STRUCTS ON EXAMS

struct stats {
int num_views;
short sum;

};

Goal: Align struct
system_f according to a

64-bit Linux system

0 1 2 3 4 5 6 7 8 9 a b c d e f

a X X X X X X X b b b b b b b b

c c c c c c c c c c c c X X X X

d d d d d d d d e e e e e e X X

f f X X X X X X

struct system_f {
char a;
int* b;
int c[3];
long d;
struct stats e;
short f;

};

MEMORY HIERARCHY (FROM LECTURE)

Registers

L1 cache
(SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

SRAM VS DRAM

 SRAM

 Faster (L1 Cache: 1 CPU cycle)

 Smaller (L1 in kilobytes; L2 in megabytes)

 More expensive and “energy-hungry”

 DRAM (Main memory)

 Relatively slower (hundreds of CPU cycles)

 Larger (Gigabytes)

 Cheaper

HARDWARE INSIGHT

 Picture from 18-447 slides

LOCALITY

 Temporal locality

 Recently referenced items are likely

to be referenced again in the near future

 After accessing address X in memory, save the bytes

in cache for future access

 Spatial locality

 Items with nearby addresses tend

to be referenced close together in time

 After accessing address X, save the block of memory

around X in cache for future access

GENERAL CACHING (FROM LECTURE)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper

memory viewed as

“blocks”

Data is copied in block

sized transfer units

Smaller, faster, more

expensive memory caches

a subset of the blocks

4

4

4

10

10

10

ADDRESS DIVISION IN CACHES

 On the Shark machines, addresses are 64-bits

 Dividing a memory address

 Block offset: b bits

 Set index: s bits

 Tag bits: address size – b – s

CACHE PARAMETERS

 A cache is a set of S = 2s cache sets

 A cache set is a set of E cache lines

 E is called associativity

 If E = 1, the cache is “direct-mapped”

 Each cache line stores a block

 Each block has B = 2b bytes

 Total capacity C = S * B * E

VISUAL CACHE TERMINOLOGY
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set

index

block

offset

data begins at this offset

CACHE LOOKUP STEPS

 Divide address into parts

 Block offset: Low b bits

 Set number: Next s bits

 Tag: Remaining ((address size) – b – s) bits

 Check each line in a set, compare tags

 If one matches and it’s valid, it’s a hit!

 If none match, it’s a miss. Add block to cache

 If there’s no room, evict a line from the set

CACHE EVICTION

 Observations

 Each address block has a specified set it belongs to

 Each block has a specific tag for that set

 If we need to add items to a set and it’s full, we have

to evict via an eviction policy

 Least-recently used (LRU)

 Main eviction policy for 15-213

 Evict (remove) the least recently used block from the

cache to make room for the next block

CACHE LAB PART A

 Cache Simulator

 Implement for variable s, b, and E values

 Values read in from a trace file (at runtime)

 Least Recently Used (LRU) Policy

 Cache Simulator != Cache

 This simulator does NOT store memory contents

 Only performs lookups/ evictions for various addresses

 We do NOT care about block offsets here

 Your goal: count the number of hits, misses, and

evictions

 Read addresses from files and return these numbers

GENERAL SIMULATOR DESIGN HINTS

 A cache is just 2D array of cache lines:

 struct cache_line cache[S][E];

 S = 2s is the number of sets

 E is associativity

 Each cache_line has:

 Valid bit

 Tag

 LRU “counter”

ANITA’S FAVORITE DATA STRUCTURE

 Linked lists

 “The only data structure you will ever need”

 (Heavily) used in cache and malloc lab

 A lesson on linked list in the credits page

FOOD FOR THOUGHT/ OTHER DESIGNS

 How necessary is the LRU counter?

 We have the power to insert nodes wherever we want

 So why use a counter?

 As a C programmer, implementing a linked list

should be second nature

 The same deal every time

 Pointers to each node

 Traversal helper functions

 Checking invariants

CACHELAB PART B

 Efficient matrix transpose

 Goal: Increasing locality via blocking

 Involves careful analysis of cache element placement

CACHELAB PART B

 Cache:

 1 kilobytes of cache

 Directly mapped (E=1)

 Block size is 32 bytes (b=5)

 S = 32 sets (s=5)

 Test Matrices:

 32 x 32, 64 x 64, 61 x 67

 You only need to optimize for these sizes

“BRO, DO YOU EVEN C?”

 In this section:

 Warnings are errors

 Headers

 Useful C functions

WARNINGS ARE ERRORS

 Strict compilation flags

 Avoid potential errors that are hard to debug

 Learn good habits from the beginning

 Add “-Werror” to your compilation flags

 DO NOT ignore the compiler errors

WHAT ABOUT HEADERS?

 Remember to include files that we will be using

functions from

 If function declaration is missing

 Find corresponding header files

 unix> man function-name

 Skim the man pages, they’ll tell you what you need to know

FUNCTION 1: GETOPT

 getopt automates parsing elements on the unix

command line

 Typically called in a loop to retrieve arguments

 Use a switch statement to handle options

 Returns -1 when there are no more arguments

 Must include the header file unistd.h

FUNCTION 1: GETOPT USAGE

 Switch statement used on the (local) variable

holding the return value from getopt

 Each command line input can be handled separately

 optarg – Points to the value of the option argument

 This is set by the getopt function

 Food for thought

 How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE

 Suppose we had an executable called “foo”

 Example call from shell: unix> ./foo –x 1

 Next slide: Parsing the argument to the x option

 Notice: We passed in an int which is read as a char *

 We use atoi to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE CONT.

int main(int argc, char** argv){
int opt, x;

/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:"))){

/* determine which argument it’s processing */
switch(opt) {

case 'x':
x = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

FUNCTION 2: FSCANF

 The fscanf function is just like scanf/sscanf

 But it can specify a stream to read from

 scanf always reads from stdin

 sscanf reads from a string

 Parameters:

 File pointer

 Format string with information on how to read file

 Variable number of pointers to with locations for

storing data from file

 Typically use in a loop until it hits the end of file

 fscanf is useful in reading from the trace files

FUNCTION 2: FSCANF EXAMPLE

FILE *pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int x, y;
char c;

/* read two ints and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){

// Do stuff
}

fclose(pFile); // remember to close file when done

FUNCTION 3 AND 4: MALLOC/FREE

 Use malloc to allocate memory on the heap

 Returns a pointer to location in memory

 Always free what you malloc

 Or you’ll suffer from memory leaks

 Example usage:
 int *pointer = malloc(sizeof(int));

 free(pointer);

 DO NOT free memory you didn’t allocate

 This includes double free-ing

STYLE AND TIPS FOR LIFE

 Check for failures and errors ALWAYS

 Functions don’t always succeed

 What happens when a system call fails?

 Common cases of failure:

 Not checking the return of malloc

 Not handling invalid inputs

 Generally, not checking returns of functions

I STOLE FROM THESE PLACES

 Upside down CPU Cache

Pyramid

 Memory Bank

Organization from 18-447

 Wikipedia: Linked Lists

 C Linked List Example

 getopt from GNU

 fscanf from CPlusPlus.com

http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/
http://www.cplusplus.com/reference/cstdio/fscanf/

