
ANITA’S SUPER AWESOME

RECITATION SLIDES
15/18-213: Introduction to Computer Systems

Memory and Caches, 18 Jun 2013

Anita Zhang, Section M

UP TO SPEED YET?

 Buflab

 Due tonight, 11:59 PM EDT

 Cachelab

 Out tonight, 11:59 PM EDT

 Due Tuesday, June 25, 2013, 11:59 PM

 This will be the last one week lab

 But the labs don’t get any easier

THIS AND THAT AND WHAT’S TODAY

 Exam Talk

 Alignment

 Memory Organization

 Caching

 Buzzword: locality

 Cache organization

 Cachelab

 Part A – Implement a (hardware) cache simulator

 Part B – Efficient matrix transpose

 “Bro, do you even C?” – helpful C stuff

MOTIVATION: WHY BOTHER WITH THE ECES?

STRUCTS, WHAT ARE THEY?

 An object with sets of (related) values that can be

passed around together

 Values not necessarily contiguous in memory

 Each object may have a different alignment rule

 There is a constant offset from the beginning of the

struct

ALIGNMENT OF STRUCTS

 Entire struct aligns according to the largest

alignment constraint of its member

 Must be multiple of K (largest alignment

requirement)

 Compilers enforce this; different alignments

depending

 Overall structure length a multiple of K

 Optimize length by declaring largest elements first

EXAMPLE OF A STRUCT (FROM LECTURE)

struct S1 {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

WHAT ARE UNIONS?

 A place in memory used to store data types

 Unlike structs, union elements are not placed

“next to each other in memory”

 Rather they are placed “on top”

 Size is decided by the largest element

 Only one field used at a time

 Each write to an element overwrites some part of

another

 This class does not deal with unions very much

UNION EXAMPLE (FROM LECTURE)

union U1 {
char c;
int i[2];
double v;

} *up;

c

i[0] i[1]

v

up+0 up+4 up+8

STRUCTS ON EXAMS

struct stats {
int num_views;
short sum;

};

Goal: Align struct
system_f according to a

64-bit Linux system

0 1 2 3 4 5 6 7 8 9 a b c d e f

a X X X X X X X b b b b b b b b

c c c c c c c c c c c c X X X X

d d d d d d d d e e e e e e X X

f f X X X X X X

struct system_f {
char a;
int* b;
int c[3];
long d;
struct stats e;
short f;

};

MEMORY HIERARCHY (FROM LECTURE)

Registers

L1 cache
(SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

SRAM VS DRAM

 SRAM

 Faster (L1 Cache: 1 CPU cycle)

 Smaller (L1 in kilobytes; L2 in megabytes)

 More expensive and “energy-hungry”

 DRAM (Main memory)

 Relatively slower (hundreds of CPU cycles)

 Larger (Gigabytes)

 Cheaper

HARDWARE INSIGHT

 Picture from 18-447 slides

LOCALITY

 Temporal locality

 Recently referenced items are likely

to be referenced again in the near future

 After accessing address X in memory, save the bytes

in cache for future access

 Spatial locality

 Items with nearby addresses tend

to be referenced close together in time

 After accessing address X, save the block of memory

around X in cache for future access

GENERAL CACHING (FROM LECTURE)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper

memory viewed as

“blocks”

Data is copied in block

sized transfer units

Smaller, faster, more

expensive memory caches

a subset of the blocks

4

4

4

10

10

10

ADDRESS DIVISION IN CACHES

 On the Shark machines, addresses are 64-bits

 Dividing a memory address

 Block offset: b bits

 Set index: s bits

 Tag bits: address size – b – s

CACHE PARAMETERS

 A cache is a set of S = 2s cache sets

 A cache set is a set of E cache lines

 E is called associativity

 If E = 1, the cache is “direct-mapped”

 Each cache line stores a block

 Each block has B = 2b bytes

 Total capacity C = S * B * E

VISUAL CACHE TERMINOLOGY
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set

index

block

offset

data begins at this offset

CACHE LOOKUP STEPS

 Divide address into parts

 Block offset: Low b bits

 Set number: Next s bits

 Tag: Remaining ((address size) – b – s) bits

 Check each line in a set, compare tags

 If one matches and it’s valid, it’s a hit!

 If none match, it’s a miss. Add block to cache

 If there’s no room, evict a line from the set

CACHE EVICTION

 Observations

 Each address block has a specified set it belongs to

 Each block has a specific tag for that set

 If we need to add items to a set and it’s full, we have

to evict via an eviction policy

 Least-recently used (LRU)

 Main eviction policy for 15-213

 Evict (remove) the least recently used block from the

cache to make room for the next block

CACHE LAB PART A

 Cache Simulator

 Implement for variable s, b, and E values

 Values read in from a trace file (at runtime)

 Least Recently Used (LRU) Policy

 Cache Simulator != Cache

 This simulator does NOT store memory contents

 Only performs lookups/ evictions for various addresses

 We do NOT care about block offsets here

 Your goal: count the number of hits, misses, and

evictions

 Read addresses from files and return these numbers

GENERAL SIMULATOR DESIGN HINTS

 A cache is just 2D array of cache lines:

 struct cache_line cache[S][E];

 S = 2s is the number of sets

 E is associativity

 Each cache_line has:

 Valid bit

 Tag

 LRU “counter”

ANITA’S FAVORITE DATA STRUCTURE

 Linked lists

 “The only data structure you will ever need”

 (Heavily) used in cache and malloc lab

 A lesson on linked list in the credits page

FOOD FOR THOUGHT/ OTHER DESIGNS

 How necessary is the LRU counter?

 We have the power to insert nodes wherever we want

 So why use a counter?

 As a C programmer, implementing a linked list

should be second nature

 The same deal every time

 Pointers to each node

 Traversal helper functions

 Checking invariants

CACHELAB PART B

 Efficient matrix transpose

 Goal: Increasing locality via blocking

 Involves careful analysis of cache element placement

CACHELAB PART B

 Cache:

 1 kilobytes of cache

 Directly mapped (E=1)

 Block size is 32 bytes (b=5)

 S = 32 sets (s=5)

 Test Matrices:

 32 x 32, 64 x 64, 61 x 67

 You only need to optimize for these sizes

“BRO, DO YOU EVEN C?”

 In this section:

 Warnings are errors

 Headers

 Useful C functions

WARNINGS ARE ERRORS

 Strict compilation flags

 Avoid potential errors that are hard to debug

 Learn good habits from the beginning

 Add “-Werror” to your compilation flags

 DO NOT ignore the compiler errors

WHAT ABOUT HEADERS?

 Remember to include files that we will be using

functions from

 If function declaration is missing

 Find corresponding header files

 unix> man function-name

 Skim the man pages, they’ll tell you what you need to know

FUNCTION 1: GETOPT

 getopt automates parsing elements on the unix

command line

 Typically called in a loop to retrieve arguments

 Use a switch statement to handle options

 Returns -1 when there are no more arguments

 Must include the header file unistd.h

FUNCTION 1: GETOPT USAGE

 Switch statement used on the (local) variable

holding the return value from getopt

 Each command line input can be handled separately

 optarg – Points to the value of the option argument

 This is set by the getopt function

 Food for thought

 How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE

 Suppose we had an executable called “foo”

 Example call from shell: unix> ./foo –x 1

 Next slide: Parsing the argument to the x option

 Notice: We passed in an int which is read as a char *

 We use atoi to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE CONT.

int main(int argc, char** argv){
int opt, x;

/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:"))){

/* determine which argument it’s processing */
switch(opt) {

case 'x':
x = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

FUNCTION 2: FSCANF

 The fscanf function is just like scanf/sscanf

 But it can specify a stream to read from

 scanf always reads from stdin

 sscanf reads from a string

 Parameters:

 File pointer

 Format string with information on how to read file

 Variable number of pointers to with locations for

storing data from file

 Typically use in a loop until it hits the end of file

 fscanf is useful in reading from the trace files

FUNCTION 2: FSCANF EXAMPLE

FILE *pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int x, y;
char c;

/* read two ints and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){

// Do stuff
}

fclose(pFile); // remember to close file when done

FUNCTION 3 AND 4: MALLOC/FREE

 Use malloc to allocate memory on the heap

 Returns a pointer to location in memory

 Always free what you malloc

 Or you’ll suffer from memory leaks

 Example usage:
 int *pointer = malloc(sizeof(int));

 free(pointer);

 DO NOT free memory you didn’t allocate

 This includes double free-ing

STYLE AND TIPS FOR LIFE

 Check for failures and errors ALWAYS

 Functions don’t always succeed

 What happens when a system call fails?

 Common cases of failure:

 Not checking the return of malloc

 Not handling invalid inputs

 Generally, not checking returns of functions

I STOLE FROM THESE PLACES

 Upside down CPU Cache

Pyramid

 Memory Bank

Organization from 18-447

 Wikipedia: Linked Lists

 C Linked List Example

 getopt from GNU

 fscanf from CPlusPlus.com

http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/
http://www.cplusplus.com/reference/cstdio/fscanf/

