
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Stacks and Buflab, 11 Jun 2013

Anita Zhang, Section M

WHAT’S NEW (OR NOT)

 Bomblab is due tonight, 11:59 PM EDT

 Your late days are wasted here

 Student: “But if you wait until the last minute, then

it only takes a minute!”

 Not (quite) true

 Buflab comes out tonight, 11:59 PM EDT

 Hacking the stack

 Stacks will be on the exams

 They’re tough at first, but I believe in you 

SOMETHING, SOMETHING MOTIVATION

“In order to support general recursion, a language needs a way to

allocate different activation records for different invocations of the

same function. That way, local variables allocated in one recursive call

can coexist with local variables allocated in a different call.” (credits to

stack overflow)

JOURNEY THROUGH TIME

 Basic Assembly Review

 Terminology

 Stacks

 IA32 Stack Discipline

 And a couple asides

 Function Call Overview

 Stack Walkthrough

 Differences between x86 (IA32) and x86_64

 Buflab Quick Start

 Essential Items of Business

 Miscellany

 Demo

DEFINITIONS AND CONVENTIONS

 Register

 Some place in hardware that stores bits

 Like boxes on the side of memory

 Caller save

 Saved by the caller of a function

 Before a function call, the caller must save any caller

save register values it wants preserved

 Callee save

 Saved by the callee of a function

 The callee is required to save and restore the values

in these registers if it is using them in the function

ASIDE: WHY BOTH?

 Why do we have both caller and callee save?

 Performance

 Not all registers need to be saved

IA32 REGISTERS

 6 general purpose registers

 Caller save
 %eax, %ecx, %edx

 Saved by the caller of a function

 Callee save
 %ebx, %edi, %esi

 Saved by the callee of a function

MORE IA32 REGISTERS

 Base Pointer

 %ebp

 Points to the “bottom” of the stack frame

 AKA the location of old %ebp that gets pushed on entry

 Stack Pointer

 %esp

 Points to the “top” of the stack

 Usually whatever was last pushed on the stack

 Instruction Pointer (Program Counter)

 %eip

 Points to the next instruction to be executed

IA32 TERMINOLOGY

Higher addresses

(ie. 0xFFFFFFFF)

“bottom”

%esp “top”

Lower addresses

(ie. 0x00000000)

Direction of

stack

growth

ASIDE STUFF

 This class is (strictly) x86(_64)

 Other architectures may not always have the same

convention

 May use a combination of registers and stack to call

functions

 May not use stacks at all (weird, I know)

 Stacks grow down/ up depending on what is

implemented

 Infinitely confusing to the newly initiated

ASIDE: DIRECTION OF GROWTH

 Stack direction REALLY doesn’t matter

 Direction of growth is dependent on the processor

 May be selectable for up/down

 …Or some other direction…?

BAM! CIRCULAR STACK!

SPARC (scalable processor architecture) Architecture

ASIDE: DIRECTION OF GROWTH

 Examples from StackOverflow

 x86 down

 SPARC in a circle

 System z in a linked list (down, at least for zLinux)

 ARM selectable

 PDP11 down

WHAT HAPPENS IN IA32

 Pushing on the stack

 In general, pushl translates to (in AT&T syntax):
 subl $0x4, %esp
movl src, (%esp)

pushl %eax

%esp

%esp

0x15 0x15

0x213

“bottom” “bottom”

WHAT HAPPENS IN IA32

 Popping off the stack

 In general, popl translates to (in AT&T syntax):
 movl (%esp), dest
addl $0x4, %esp

popl %eax

%esp 

%esp  0x1000x100

0x213

“bottom”“bottom”

STACK FRAMES WHATCHAMACALLITS?

 Every function call gets a “stack frame”

 All the useful stuff can go on the stack!

 Local variables (scalars, arrays, structs)
 What the compiler couldn’t fit into registers

 Callee/caller save registers

 Temporary variables

 Arguments

 Stacks make recursion work

 Key idea: “Storage for each instance of procedure
call” (stolen out of 15-410 slides)

SO THAT’S WHAT IT LOOKS LIKE…

… Earlier Frames

…

Caller’s frame

Argument n

…

Argument 1

Return Address

Frame Pointer
%ebp

Saved (old) %ebp

Current (callee) frame

Saved registers, local

variables, and

temporaries

Stack Pointer

%esp

Argument build area

Increasing

Addresses

FUNCTION CALL CALLER (IA32)

 Caller

 Save (push) relevant caller save registers

 Push arguments

 Call function

 Caller after function return

 “Remove” (add to %esp or pop) arguments

 Restore (pop) saved caller save registers

FUNCTION CALL CALLEE (IA32)

 Callee

 Push %ebp (save stack frame)

 Move %esp into %ebp

 Save (push) callee save registers it wants to use

 Callee before return

 Restore (pop) callee save registers previously saved

 Move %ebp into %esp

 Moves stack pointer to the saved %ebp

 Restore (pop) %ebp

FUNCTION CALL MORE (IA32)

 Implied operations

 “call” implicitly pushes return address

 Return address is always of the instruction after the call

 “ret” implicitly pops return address into %eip

 Becomes the next instruction to execute!

STACK FRAMES IN ACTION

C Code Disassembly

int main() {

return addition(5, 6);

}

int addition(int x, int y)

{

return x+y;

}

08048394 <main>:

8048394: 55 push %ebp

8048395: 89 e5 mov %esp,%ebp

8048397: 83 e4 f0 and $0xfffffff0,%esp

804839a: 83 ec 10 sub $0x10,%esp

804839d: c7 44 24 04 06 00 00 movl $0x6,0x4(%esp)

80483a4: 00

80483a5: c7 04 24 05 00 00 00 movl $0x5,(%esp)

80483ac: e8 02 00 00 00 call 80483b3 <addition>

80483b1: c9 leave

80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 0c mov 0xc(%ebp),%eax

80483b9: 8b 55 08 mov 0x8(%ebp),%edx

80483bc: 8d 04 02 lea (%edx,%eax,1),%eax

80483bf: c9 leave

80483c0: c3 ret

BREAKDOWN: ARGUMENTS

 Build the arguments (special note: 2 instructions are executed in this example)

main():

movl $0x6,0x4(%esp)

movl $0x5,(%esp)

0x108

0x104

Before After

%esp = 0x104
%ebp = 0x200
%eip = 0x804839d

%esp = 0x104
%ebp = 0x200
%eip = 0x80483ac

0x6
(argument 2)

0x5
(argument 1)

BREAKDOWN: FUNCTION CALL

 Call the function

call 80483b3 <addition>

0x108

0x104

Before After

%esp = 0x104
%ebp = 0x200
%eip = 0x80483ac

%esp = 0x100
%ebp = 0x200
%eip = 0x80483b3

0x100 0x80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

BREAKDOWN: CALLEE SET-UP

 Stack frame set up for the callee
(special note: 2 instructions are executed in this example)

addition():

push %ebp

mov %esp,%ebp

0x108

0x104

Before After

%esp = 0x100
%ebp = 0x200
%eip = 0x80483b3

%esp = 0xFC
%ebp = 0xFC
%eip = 0x80483b6

0x100 0x80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

0x200
(ebp for prev. stack frame)

0xFC

BREAK FROM THE EXAMPLE.. KIND OF

 Accessing an argument

 In the current frame, arguments are accessed via
references to %ebp
 Upon entry, we could also use %esp to get the arguments

 Notice how argument 1 is at 0x8(%ebp), not 0x4(%ebp)

0x108

0x104

Argument Location

Argument 2 0xC(%ebp)

Argument 1 0x8(%ebp)

0x100

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

0x200
(ebp for prev. stack frame)

0xFC

LET’S REVIEW THE CODE AGAIN

C Code Disassembly

int main() {

return addition(5, 6);

}

int addition(int x, int y)

{

return x+y;

}

08048394 <main>:

8048394: 55 push %ebp

8048395: 89 e5 mov %esp,%ebp

8048397: 83 e4 f0 and $0xfffffff0,%esp

804839a: 83 ec 10 sub $0x10,%esp

804839d: c7 44 24 04 06 00 00 movl $0x6,0x4(%esp)

80483a4: 00

80483a5: c7 04 24 05 00 00 00 movl $0x5,(%esp)

80483ac: e8 02 00 00 00 call 80483b3 <addition>

80483b1: c9 leave

80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 0c mov 0xc(%ebp),%eax

80483b9: 8b 55 08 mov 0x8(%ebp),%edx

80483bc: 8d 04 02 lea (%edx,%eax,1),%eax

80483bf: c9 leave

80483c0: c3 ret

BREAKDOWN OF THE EXAMPLE

 Preparing to return from a function

addition():

leave

0x108

0x104

Before After

%esp = 0xFC
%ebp = 0xFC
%eip = 0x80483bf

%esp = 0x100
%ebp = 0x200
%eip = 0x80483c0

0x100 0x80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

0x200
(ebp for prev. stack frame)

0xFC

(equivalent to:

movl %ebp, %esp

pop %ebp)

BREAKDOWN OF THE EXAMPLE

 Return from a function

ret

0x108

0x104

Before After

%esp = 0xFC
%ebp = 0x200
%eip = 0x80483c0

%esp = 0x104
%ebp = 0x200
%eip = 0x80483b1

0x100

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

STACKS AND STUFF ON X86_64

 Arguments (≤ 6) are passed via registers
 %rdi, %rsi, %rcx, %r8, %r9

 Extra arguments passed via stack!

 IA32 stack knowledge still matters!

 Don’t need %ebp as the base pointer

 Compilers are smarter now

 Overall less stack use

 == Potentially better performance

AND FLOATING POINT?

 Floating point arguments are complicated

 Out of the scope of this course

 Some chips have a separate floating point stack

 Example of complication: x86_64 stack on

function entry needs to be 16 byte aligned for

floating point

 And other potential issues you shouldn’t worry about

BUFLAB

 A series of exercises asking you to overflow the

stack and change execution

 You do this with inputs that are super long and write

over stack values

 A paper on stack corruption

 Smashing the Stack for Fun and Profit

 Incorrect inputs will not hurt your score

http://insecure.org/stf/smashstack.html

BASIC APPROACH

 Examine the C code/ disassembly

 Disassembling

 > objdump -d bufbomb > outfile

 Don’t forget that GDB still exists!

 Put your byte code exploit into a text file

 Later, write a few lines of (corruption) assembly

 Compiling

 > gcc -m32 -c example.S

 Get the byte codes

 > objdump -d example.o > outfile

FEEDING BYTE CODES

 Option 1: Pipes
 > cat exploitfile | ./hex2raw | ./bufbomb -t andrewID

 Option 2: Redirects
 > ./hex2raw < exploitfile > exploit-rawfile

 > ./bufbomb -t andrewID < exploit-rawfile

 Option 3: Redirects in GDB
 > gdb bufbomb

 (gdb) run -t andrewID < exploit-rawfile

BUFLAB

 The writeup contains (pretty much) everything you need

 How to use the tools

 How to write corruption code

 Even tells you how to solve the level (at a high level)!

 Please don’t ask questions answered by the writeup

 Or I will make this sad face: (TT _ TT)

 The writeup is on Autolab

 Couple links down from the handout

BUFLAB TOOLS

 ./makecookie andrewID

 Makes a unique “cookie” based on your Andrew ID

 ./hex2raw

 Use the hex generated from assembly to pass raw strings into

bufbomb

 ./bufbomb -t andrewID

 The actual program to attack

 Always pass in with your Andrew ID so your score is logged

POTENTIAL POINTS OF FAILURE

 Don’t use byte value 0A in your exploit

 ASCII for newline

 Gets() will terminate early if it sees this

 Multiple exploits submitted for the same level

always takes the latest submission

 So if you pass correctly, but accidently pass the

wrong exploit later, just pass the correct one again

 If you manage to execute your exploit….

 GDB will say weird things

 “Can’t access memory…” etc.

 Just ignore it and keep going

 Don’t forget the –n flag on the last level

A LESSON ON ENDIANNESS

 We’re working with little endian

 Least significant byte is at the lower address

Higher addresses

… Caller stack frame

Return Address

Saved %ebp  %ebp

Saved %ebx

Canary
 Potential way to detect

stack corruption

MSB [7] [6] [5] [4]
buf string

(each char is a byte)[3] [2] [1] [0] LSB

…

Lower addresses

MISCELLANY BUT NECESSARY

 Canaries

 Attempts to detect overrun buffers

 Sits at the end of the buffer (array)

 If the array overflows, hopefully we detect this with a

change in the canary value….

 Nop sleds

 The “nop” instruction means “no-op/ no operation”

 In computer architecture it’s like “pipeline bubbles”

 Consider many nop byte codes in an exploit

 If an actual exploit is placed at the end of the nop sled, it

allows for a less precise return address

STOLEN CREDITS & QUESTIONS SLIDE

 xkcd: Tabletop Roleplaying

 StackOverflow: Supporting Recursion

 Understanding the SPARC Architecture

 StackOverflow: Direction of Stack Growth

 CS:APP p. 220 – Stack Frame Structure

 Smashing the Stack for Fun and Profit

 CS:APP p.262 – NOP sleds

 CS:APP p.263 – Stack Frame with a canary

 Upcoming Double Mocha Latte Picture

http://xkcd.com/244/
http://xkcd.com/244/
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://www.sics.se/~psm/sparcstack.html
http://stackoverflow.com/questions/664744/what-is-the-direction-of-stack-growth-in-most-modern-systems
http://insecure.org/stf/smashstack.html
http://4.bp.blogspot.com/-bAabhSu2d_Y/T8kNSEUXXOI/AAAAAAAABjc/2fvbJc5NOp8/s1600/185069865907538817_66ZQq9Pq_c.jpg

DEMO TIME!

 Byte code format

 Byte code feeding

 Example assembly

 Compiling assembly

 Not quite assembling

 Assembly to byte code

