ANITA’S SUPER AWESOME

® RECITATION SLIDES

15/18-213: Introduction to Computer Systems
Py Assembly and GDB, 4 Jun 2013

Anita Zhang, Section M

MANAGEMENT AND STUFF

Bomb Lab due Tues, 11 Jun 2013, 11:59 pm EST

Apparently for distance students it’s 2 days after
This 1s my favorite lab!

Buf Lab out Tues, 11 Jun 2013, 11:59 pm EST

Due the week after

FAQ on the main site

Has some stuff
Answers to “Permission denied” errors, etc

WHAT’S ON THE MENU TODAY?

Help (again)

Books (again)
Motivation
Registers

Assembly

Bomb Lab Overview

GDB
Walkthrough
More Bomb Lab

HELPING Us, HELPING YOU?

Email us: 15-213-staff@cs.cmu.edu

Please attach C files if you have a specific question

Responses within 2 minutes (record!)

IRC: irc.freenode.net, #4213

Anita polls it every 3 hours
Videos on Blackboard
Everything else, Autolab: autolab.cs.cmu.edu

Office hours: Sun-Thurs, 6pm — 9pm, Gates 5205
Both Michael and Anita will be there (mostly)
We leave at 7:30pm 1f no one shows up

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

WHAT HAVE YOU READ?

Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

Lufy Low

B EInanng
I LS

TP Juua: e L

Ty pry Y phwe 1 LT 7015

DEFINITIONS AND CONVENTIONS

Register
Some place in hardware that stores bits
Caller save

Saved by the caller of a function
Before a function call, the caller must save any caller
save register values it wants preserved
Callee save
Saved by the callee of a function

The callee 1s required to save and restore the values
in these registers if it is using them in the function

INSIGHT FOR THE INQUISITIVE

Why are we not learning about the stack yet?
Because x86_64

“Technology note”
x86(_64) only

REGISTERS AND ALL THEM BITS

o Quad = 64 bits

o Doubleword = 32 bits
o Word = 16 bits

o Byte = 8 bits

These are all parts of the same register

WHAT WE'RE WORKING WITH

General Purpose (x86)
Caller Save: %eax, %ecx, %edx

Callee Save: %ebx, %esi, %ed1, %ebp, %esp
x86_64 conventions on the next slide

Specials
%elp — Instruction pointer
%ebp — frame pointer
%esp — stack pointer

Conditional Flags
Sit in a special register of its own
You only need to worry about the ones mentioned later

X86_64, LOTS OF REGISTERS!

%rax %eax %ax %ah %al Return Value
%rbx %ebx %bx %bh %bl Callee Save
%rex %ecx %cx %ch %cl 4t Argument
%rdx %edx %dx %dh %dl 3" Argument
%rsi %esi %si %sil 2nd Argument
%rdi %edi %di %dil 1st Argument
%rbp %ebp %bp %bpl Callee Save
%rsp %esp %sp %spl Stack Pointer
%r8 %r8d %r8w %r8b 5th Argument
%r9 %r9d %rIw %r9b 6t Argument
%110 %r10d %r10w %r10b Caller Save
%rll %rlld %rllw %r11b Caller Save
%r12 %r12d %rl2w %r12b Callee Save
%r13 %r13d %rl13w %r12b Callee Save
%r14 %rl4d %rw %14b Callee Save

%r15 %r15d %rl5w %15b Callee Save

SOME MORE DEFINITIONS

Memory Addressing

How assemblers denote memory locations
o Direct
o Indirect
o Relative
o Absolute

O o o0

Syntax differs, addresses do not

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Operations can take several forms:
Register-to-Register
Register-to-Memory / Memory-to-Register
Immediate-to-Register / Immediate-to-Memory
One address operations (push, pop)
Did I miss any?

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

x86(_64) Addressing (some kind of indirect)
Offset(Base, Index, Scale)
D(RDb, R1, S) 2 Mem[Rb + R1*S + D]
o D can be any signed integer

o Scale1s 1, 2, 4, 8 (assume 1 if omitted)

o Assume O for base if omitted

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Using parenthesis

Most of the time parenthesis means dereference
o This 1s still only x86(_64)

Examples of parenthesis usage:
(%eax)

o Contents of memory at address stored, %eax

(%ebx, %ecx)

o Contents of memory stored at address, %ebx + %ecx
(%ebx, %ecx, 8)

o Contents of memory stored at address, %ebx + 8*%ecx
4 (%ebx, %ecx, 8)

o Contents of memory stored at address, %ebx + 8*%ecx + 4

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Using parenthesis
Sometimes parenthesis are used just for addressing
o This 1s still only x86(_64)
Example
leal (%ebx, %ecx, 8), destination
o Take the address, %ebx + 8*%ecx
o Does not dereference, uses the calculated value directly

Examples of not using parenthesis
Y%eax

o Use the value in %eax!

$0x213

o A constant value

REVIEW OF CONDITIONALS/ FLAGS

Most operations will set conditional flags

Bit operations

Arithmetic

Comparisons...
Core 1dea: For conditionals, look one instruction
before 1t to see whether 1t 1s true or false

Will be explained

FL.AGS WE CARE ABOUT
Carry (CF)

Arithmetic carry/ borrow

Parity (PF)

Odd or even number of bits set

Zero (ZF)
Result was zero
Sign (SF)
Most significant bit was set

Overflow (OF)

Result does not fit into the location

PREP FOR ALL THE CHEAT SHEETS

Warning: The following slides contain lots of
assembly 1instructions.
All from CS:APP (our textbook BTW)

We're not going over every single one...

Use 1t as a reference for Bomb Lab

Quick note on Intel vs. AT&T
This 1s AT&T syntax (also, Bomb Lab syntax)

Looks like: “src, dest”

Intel tends to follow “dest, src”
Check out their ISA sometime

ALL THE CHEAT SHEETS (MOVEMENT)

movb S, D Move byte

movw S,D Move word

movl S,D Move doubleword

movsbw S, D Move byte to word (sign extended)
movsbl S, D Move byte to doubleword (sign extended)
movswl S, D Move word to doubleword (sign extended)
movzbw S, D Move byte to word (zero extended)
movzbl S, D Move byte to doubleword (zero extended)
movzwl S,D Move word to doubleword (zero extended)
pushl S Push double word

popl D Pop double word

ALL THE CHEAT SHEETS (BIT OPS)

LEAL S,D D <« &S (Load effective address of source into destination)
INC D D« D+1

DEC D D« D-1

NEG D D« -D

NOT D D« ~D

ADD S,D D&D+S

SUB S,D D&D-S

IMUL S,D D&€D*S

XOR S,D D&«D~*S

OR S,D D&D|S

AND S,D D€D&S

SAL k,D D ¢« D<<k

SHL k,D D¢ D<<k

SAR k,D D € D >> k (arithmetic shift)

SHR k, D D € D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

imull S R[%edx]:R[%eax] € S * R[%eax]

Signed full multiply of %eax by S
Result stored in %edx:%eax

mull S R[%edx]:R[%eax] € S * R[%eax]

Unsigned full multiply of %eax by S
Result stored in %edx:%eax

cltd R[%edx]:R[%eax] € SignExtend(R[%eax])

Sign extend %eax into %edx

1divl S R[%edx] € R[%edx]:R[%eax] mod S;
R[%eax] € R[%edx]:R[%eax] ~ S

Signed divide of %eax by S
Quotient stored in %eax
Remainder stored in %edx

divl S R[%edx] € R[%edx]:R[%eax] mod S;
R[%eax] € R[%edx]:R[%eax] ~ S

Unsigned divide of %eax by S
Quotient stored in %eax
Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

cmpb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 — S2.

cmpw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 — S2.

cmpl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 — S2.

testb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 & S2.

testw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 & S2.

testl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

sete/ setz

setne/ setnz

sets

setns

setg/ setnle
setge/ setnl
setl/ setnge

setle/ setng

seta/ setnbe
setae/ setnb
setb/ setnae

setbe/ setna

S d

O O o o

S O O O

D & ZF (“set if equal to 07)
D & ~ZF (set if not equal to 0)

D < SF (set if negative)
D € ~SF (set if nonnegative)

D € ~(SF ~ OF) & ~ZF (set if greater (signed >))

D € ~(SF ~ OF) (set if greater or equal (signed >=))

D € SF » OF (set if less than (signed <))

D €« (SF ~ OF) | ZF (set if less than or equal (signed <=))

D € ~CF & ~ZF (set if above (unsigned >))

D € ~CF (set if above or equal (unsigned >=))

D < CF (set if below (unsigned <))

D € CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

jmp Label Jump to label

jmp *QOperand Jump to specified locations

jel jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF » OF) & ~ZF)
jgel jnl Label Jump if greater or equal (signed) (~(SF * OF))
I/ jnge Label Jump if less (signed) (SF » OF)

jle/ jng Label Jump if less or equal (signed) ((SF ~ OF) | ZF)
ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jael jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

cmove/ cmovz

cmovne/ cmovnz

cCmovs

cmovns

cmovg/ cmovnle
cmovge/ cmovnl
cmovl/ cmovnge

cmovle/ cmovg

cmova/ cmovnbe
cmovae/ cmovnb
cmovb/ ecmovnae

cmovbe/ cmovna

S, R
S, R

S, R
S, R

S, R
S, R
S, R
S, R

S, R
S, R
S, R
S, R

S € R if Equal/ zero (ZF)
S € R if Not equal/ not zero (~ZF)

S € R if Negative (SF)
S € R if Nonnegative (~SF)

S € R if Greater (signed >) (~(SF * OF) & ~ZF)

S € R if Greater or equal (signed >=) (~(SF * OF))
S € R if Less (signed <) (SF ~ OF)

S € R if Less or equal (signed <=) ((SF » OF) | ZF)

S € R if Above (unsigned >) (~CF & ~ZF)

S € R if Above or equal (unsigned >=) (~CF)

S €< R if Below (unsigned <) (CF)

S € R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

call Label Push return and jump to label
call *operand Push return and jump to specified location
leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly
(AT&T syntax of source, destination):

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

DR. EVIL AND BOMBLAB

6 stages, each asking for input
Wrong input - bomb explodes (lose 1/2 point)
Each stage may have multiple answers

You get:
Bomb executable
Partial source of Dr. Evil mocking you

Speed up next phase traversal with a text file

Place answers on each line
Run with bomb as ./bomb <solution file>

HOW IT WORKS

“But how do I find the solutions if I don’t have C
code to work from?”
Read a lot of bomb disassembly

All of the phases are just loops and patterns
Or just dead simple (see the demo)

GDB

If you're not working on a shark machine, your
bomb won’t work.

Will get “illegal host”

WORKING THROUGH THIS THING

Read the disassembly
phase_1, phase_2, phase_3....
explode_bomb
Understand what’s going on

GNU Debugger
Step through each instruction, examine registers..
Set up breakpoints

Make sure to type “kill” when you hit the
explode_bomb breakpoint

You're screwed once you hit here, so why not exit?

But I DoN'T KNOW HOW TO GDB??

o Here have a cheat sheet
e http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

» Everything you need to use GDB to solve bomblab

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

e 3 ¥ e
rax Ox7Eff£f7ffel60 140737354129760 Ox7E£££f£f7ffel60 140737354129760
rcx Ox7EL££7dE3£47 140737351991111 0x32600 206336

Ox7Effffffe2cO Ox7Effffffe2cO Ox7E££f£££felT70 Ox7E£f££ffel70
0x1f25bc2 32660418 0x7 7

0x400788 4196232 0x206 518

0Oxd2e263db 3538052059 0x99%e8d2e263db 169225249514459

0x99%e8d2df6466 169225249317990 Ox7E££££7fca700 140737353918208
Ox7££££7de0949 Ox7££££7de0949 <dl main+4921> 0x206 [PF IF]

x7E£££7de0949

child process 17859 In:
Welcome to my d

eakp

Ox7L££££7de0949

FANCY GDB COMMANDS

Layout commands split GDB into cool windows
May/ may not lag a lot.
Has a tendency to not work properly sometimes

layout asm
Splits GDB into assembly and GDB command

layout src
Splits GDB into C source and GDB command

layout regs

Splits GDB into register window with either source
or assembly, and GDB command

Arrow, page up/down to traverse layout windows
ctrl+x a to switch back to normal GDB

GETTING STARTED

Download and untar ON A SHARK MACHINE

shark> objdump —d bomb > disassembly filename
shark> objdump —t bomb > symbol table filename

shark> strings bomb > strings filename
shark> gdb bomb

SPEED UP THE WAIT

When you have solutions, put it into a text file
Separate each solution with a newline

Your bomb will auto-advance completed phases with
pre-filled solutions

Then when you run gdb next time:
(gdb)> run solution_file

DEMO TIME

BoOMB LAB SPECIFICS

int sscanf (const char *s, const char *format, ...);
S

o Source string to retrieve data from
format

o Formatting string used to get values from the source string

o Depending the format string, one location (address) per
formatter used to hold values extracted from source string

SSCANF EXAMPLE

#include <stdio.h>

int main (O {
char sentence []="Rudolph 1s 12 years old";
char str [20];
int 1;
sscanf (sentence,"%s %*s %d",str,&1);
printf ("%s -> %d\n",str,1);
return 0;

Outputs: Rudolph -> 12

RELEVANCE TO BOMB LAB

Why do we care about sscanf?
Mostly used to read in arguments
Note of which locations read in values will be stored

o Important for knowing where arguments will be stored
o And how they will be used

MORE BOMB LLAB SPECIFICS

o Jump tables
» In memory 1s an “array” of locations
» In assembly it is possible to index into this “array”

» Each entry of the array will potentially hold
addresses to the next instruction to go to

JUMP TABLES

The tip-off is something like this:

jmpq *0x400600(,%rax,8)
Empty base means implied O
%rax is the “Iindex”
8 1s the “scale”

In a jump table with addresses, 64-bit machines addresses
are 8 bytes

* indicates a dereference (as in regular C)
Like Teal; does not do a dereference just with parenthesis

Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8
0x400610: 0x00000000004004¢8 0x00000000004004be
0x400620: 0x00000000004004¢1 0x00000000004004d7
0x400630: 0x00000000004004¢8 0x00000000004004be

CREDITS & QUESTIONS

o http://stackovertlow.com/questions/757398/what-
are-some-ways-you-can-manage-large-scale-
assembly-language-projects

o P. 274 of CS:APP — x86_64 Registers
o P. 171 - 221 of CS:APP — Assembly Instructions

o http://www.cplusplus.com/reference/cstdio/sscant/

http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://www.cplusplus.com/reference/cstdio/sscanf/

