
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Assembly and GDB, 4 Jun 2013

Anita Zhang, Section M

MANAGEMENT AND STUFF

 Bomb Lab due Tues, 11 Jun 2013, 11:59 pm EST

 Apparently for distance students it’s 2 days after

 This is my favorite lab!

 Buf Lab out Tues, 11 Jun 2013, 11:59 pm EST

 Due the week after

 FAQ on the main site

 Has some stuff

 Answers to “Permission denied” errors, etc

WHAT’S ON THE MENU TODAY?

 Help (again)

 Books (again)

 Motivation

 Registers

 Assembly

 Bomb Lab Overview

 GDB

 Walkthrough

 More Bomb Lab

HELPING US, HELPING YOU?

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 Responses within 2 minutes (record!)

 IRC: irc.freenode.net, ##213

 Anita polls it every 3 hours

 Videos on Blackboard

 Everything else, Autolab: autolab.cs.cmu.edu

 Office hours: Sun-Thurs, 6pm – 9pm, Gates 5205

 Both Michael and Anita will be there (mostly)

 We leave at 7:30pm if no one shows up

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

WHAT HAVE YOU READ?

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

DEFINITIONS AND CONVENTIONS

 Register

 Some place in hardware that stores bits

 Caller save

 Saved by the caller of a function

 Before a function call, the caller must save any caller

save register values it wants preserved

 Callee save

 Saved by the callee of a function

 The callee is required to save and restore the values

in these registers if it is using them in the function

INSIGHT FOR THE INQUISITIVE

 Why are we not learning about the stack yet?

 Because x86_64

 “Technology note”

 x86(_64) only

REGISTERS AND ALL THEM BITS

 Quad = 64 bits

 Doubleword = 32 bits

 Word = 16 bits

 Byte = 8 bits

These are all parts of the same register

%rax – 64 bits

%eax – 32 bits

%ax – 16 bits

%ah %al

8 bits 8 bits

WHAT WE’RE WORKING WITH

 General Purpose (x86)

 Caller Save: %eax, %ecx, %edx

 Callee Save: %ebx, %esi, %edi, %ebp, %esp

 x86_64 conventions on the next slide

 Specials

 %eip – instruction pointer

 %ebp – frame pointer

 %esp – stack pointer

 Conditional Flags

 Sit in a special register of its own

 You only need to worry about the ones mentioned later

X86_64, LOTS OF REGISTERS!
64 bits wide 32 bits wide 16 bits wide 8 bits wide 8 bits wide Use

%rax %eax %ax %ah %al Return Value

%rbx %ebx %bx %bh %bl Callee Save

%rcx %ecx %cx %ch %cl 4th Argument

%rdx %edx %dx %dh %dl 3rd Argument

%rsi %esi %si %sil 2nd Argument

%rdi %edi %di %dil 1st Argument

%rbp %ebp %bp %bpl Callee Save

%rsp %esp %sp %spl Stack Pointer

%r8 %r8d %r8w %r8b 5th Argument

%r9 %r9d %r9w %r9b 6th Argument

%r10 %r10d %r10w %r10b Caller Save

%r11 %r11d %r11w %r11b Caller Save

%r12 %r12d %r12w %r12b Callee Save

%r13 %r13d %r13w %r12b Callee Save

%r14 %r14d %rw %14b Callee Save

%r15 %r15d %r15w %15b Callee Save

SOME MORE DEFINITIONS

 Memory Addressing

 How assemblers denote memory locations

 Direct

 Indirect

 Relative

 Absolute

 …

 Syntax differs, addresses do not

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Operations can take several forms:

 Register-to-Register

 Register-to-Memory / Memory-to-Register

 Immediate-to-Register / Immediate-to-Memory

 One address operations (push, pop)

 Did I miss any?

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 x86(_64) Addressing (some kind of indirect)

 Offset(Base, Index, Scale)

 D(Rb, Ri, S) Mem[Rb + Ri*S + D]

 D can be any signed integer

 Scale is 1, 2, 4, 8 (assume 1 if omitted)

 Assume 0 for base if omitted

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Using parenthesis

 Most of the time parenthesis means dereference

 This is still only x86(_64)

 Examples of parenthesis usage:

 (%eax)

 Contents of memory at address stored, %eax

 (%ebx, %ecx)

 Contents of memory stored at address, %ebx + %ecx

 (%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx

 4(%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx + 4

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Using parenthesis

 Sometimes parenthesis are used just for addressing

 This is still only x86(_64)

 Example

 leal (%ebx, %ecx, 8), destination

 Take the address, %ebx + 8*%ecx

 Does not dereference, uses the calculated value directly

 Examples of not using parenthesis

 %eax

 Use the value in %eax!

 $0x213

 A constant value

REVIEW OF CONDITIONALS/ FLAGS

 Most operations will set conditional flags

 Bit operations

 Arithmetic

 Comparisons…

 Core idea: For conditionals, look one instruction

before it to see whether it is true or false

 Will be explained

FLAGS WE CARE ABOUT

 Carry (CF)

 Arithmetic carry/ borrow

 Parity (PF)

 Odd or even number of bits set

 Zero (ZF)

 Result was zero

 Sign (SF)

 Most significant bit was set

 Overflow (OF)

 Result does not fit into the location

PREP FOR ALL THE CHEAT SHEETS

 Warning: The following slides contain lots of

assembly instructions.

 All from CS:APP (our textbook BTW)

 We’re not going over every single one…

 Use it as a reference for Bomb Lab

 Quick note on Intel vs. AT&T

 This is AT&T syntax (also, Bomb Lab syntax)

 Looks like: “src, dest”

 Intel tends to follow “dest, src”

 Check out their ISA sometime

ALL THE CHEAT SHEETS (MOVEMENT)

Instruction Effect

movb S, D Move byte

movw S, D Move word

movl S, D Move doubleword

movsbw S, D Move byte to word (sign extended)

movsbl S, D Move byte to doubleword (sign extended)

movswl S, D Move word to doubleword (sign extended)

movzbw S, D Move byte to word (zero extended)

movzbl S, D Move byte to doubleword (zero extended)

movzwl S, D Move word to doubleword (zero extended)

pushl S Push double word

popl D Pop double word

ALL THE CHEAT SHEETS (BIT OPS)

Instruction Effect

LEAL S, D D &S (Load effective address of source into destination)

INC D D D + 1

DEC D D D – 1

NEG D D –D

NOT D D ~D

ADD S, D D D + S

SUB S, D D D – S

IMUL S, D D D * S

XOR S, D D D ^ S

OR S, D D D | S

AND S, D D D & S

SAL k, D D D << k

SHL k, D D D << k

SAR k, D D D >> k (arithmetic shift)

SHR k, D D D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

Instruction Effect

imull S R[%edx]:R[%eax] S * R[%eax]

Signed full multiply of %eax by S

Result stored in %edx:%eax

mull S R[%edx]:R[%eax] S * R[%eax]

Unsigned full multiply of %eax by S

Result stored in %edx:%eax

cltd R[%edx]:R[%eax] SignExtend(R[%eax])

Sign extend %eax into %edx

idivl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax] R[%edx]:R[%eax] ÷ S

Signed divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

divl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax] R[%edx]:R[%eax] ÷ S

Unsigned divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

Instruction Effect

cmpb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 – S2.

cmpw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 – S2.

cmpl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 – S2.

testb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 & S2.

testw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 & S2.

testl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

Instruction Effect

sete/ setz D D ZF (“set if equal to 0”)

setne/ setnz D D ~ZF (set if not equal to 0)

sets D D SF (set if negative)

setns D D ~SF (set if nonnegative)

setg/ setnle D D ~(SF ^ OF) & ~ZF (set if greater (signed >))

setge/ setnl D D ~(SF ^ OF) (set if greater or equal (signed >=))

setl/ setnge D D SF ^ OF (set if less than (signed <))

setle/ setng D D (SF ^ OF) | ZF (set if less than or equal (signed <=))

seta/ setnbe D D ~CF & ~ZF (set if above (unsigned >))

setae/ setnb D D ~CF (set if above or equal (unsigned >=))

setb/ setnae D D CF (set if below (unsigned <))

setbe/ setna D D CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

Instructions Effect

jmp Label Jump to label

jmp *Operand Jump to specified locations

je/ jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF ^ OF) & ~ZF)

jge/ jnl Label Jump if greater or equal (signed) (~(SF ^ OF))

jl/ jnge Label Jump if less (signed) (SF ^ OF)

jle/ jng Label Jump if less or equal (signed) ((SF ^ OF) | ZF)

ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jae/ jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

Instruction Effect

cmove/ cmovz S, R S R if Equal/ zero (ZF)

cmovne/ cmovnz S, R S R if Not equal/ not zero (~ZF)

cmovs S, R S R if Negative (SF)

cmovns S, R S R if Nonnegative (~SF)

cmovg/ cmovnle S, R S R if Greater (signed >) (~(SF ^ OF) & ~ZF)

cmovge/ cmovnl S, R S R if Greater or equal (signed >=) (~(SF ^ OF))

cmovl/ cmovnge S, R S R if Less (signed <) (SF ^ OF)

cmovle/ cmovg S, R S R if Less or equal (signed <=) ((SF ^ OF) | ZF)

cmova/ cmovnbe S, R S R if Above (unsigned >) (~CF & ~ZF)

cmovae/ cmovnb S, R S R if Above or equal (unsigned >=) (~CF)

cmovb/ cmovnae S, R S R if Below (unsigned <) (CF)

cmovbe/ cmovna S, R S R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

Instruction Effect

call Label Push return and jump to label

call *operand Push return and jump to specified location

leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly

(AT&T syntax of source, destination):

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

DR. EVIL AND BOMBLAB

 6 stages, each asking for input

 Wrong input bomb explodes (lose 1/2 point)

 Each stage may have multiple answers

 You get:

 Bomb executable

 Partial source of Dr. Evil mocking you

 Speed up next phase traversal with a text file

 Place answers on each line

 Run with bomb as ./bomb <solution file>

HOW IT WORKS

 “But how do I find the solutions if I don’t have C

code to work from?”

 Read a lot of bomb disassembly

 All of the phases are just loops and patterns

 Or just dead simple (see the demo)

 GDB

 If you’re not working on a shark machine, your

bomb won’t work.

 Will get “illegal host”

WORKING THROUGH THIS THING

 Read the disassembly

 phase_1, phase_2, phase_3….

 explode_bomb

 Understand what’s going on

 GNU Debugger

 Step through each instruction, examine registers..

 Set up breakpoints

 Make sure to type “kill” when you hit the

explode_bomb breakpoint

 You’re screwed once you hit here, so why not exit?

BUT I DON’T KNOW HOW TO GDB??

 Here have a cheat sheet

 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

 Everything you need to use GDB to solve bomblab

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

FANCY GDB

FANCY GDB COMMANDS

 Layout commands split GDB into cool windows

 May/ may not lag a lot.

 Has a tendency to not work properly sometimes

 layout asm

 Splits GDB into assembly and GDB command

 layout src

 Splits GDB into C source and GDB command

 layout regs

 Splits GDB into register window with either source
or assembly, and GDB command

 Arrow, page up/down to traverse layout windows

 ctrl+x a to switch back to normal GDB

GETTING STARTED

 Download and untar ON A SHARK MACHINE

 shark> objdump –d bomb > disassembly filename

 shark> objdump –t bomb > symbol table filename

 shark> strings bomb > strings filename

 shark> gdb bomb

SPEED UP THE WAIT

 When you have solutions, put it into a text file

 Separate each solution with a newline

 Your bomb will auto-advance completed phases with

pre-filled solutions

 Then when you run gdb next time:

 (gdb)> run solution_file

DEMO TIME

BOMB LAB SPECIFICS

 int sscanf (const char *s, const char *format, ...);

 s

 Source string to retrieve data from

 format

 Formatting string used to get values from the source string

 …

 Depending the format string, one location (address) per

formatter used to hold values extracted from source string

SSCANF EXAMPLE

#include <stdio.h>

int main () {

char sentence []="Rudolph is 12 years old";

char str [20];

int i;

sscanf (sentence,"%s %*s %d",str,&i);

printf ("%s -> %d\n",str,i);

return 0;

}

 Outputs: Rudolph -> 12

RELEVANCE TO BOMB LAB

 Why do we care about sscanf?

 Mostly used to read in arguments

 Note of which locations read in values will be stored

 Important for knowing where arguments will be stored

 And how they will be used

MORE BOMB LAB SPECIFICS

 Jump tables

 In memory is an “array” of locations

 In assembly it is possible to index into this “array”

 Each entry of the array will potentially hold

addresses to the next instruction to go to

JUMP TABLES

 The tip-off is something like this:
 jmpq *0x400600(,%rax,8)

 Empty base means implied 0

 %rax is the “index”

 8 is the “scale”

 In a jump table with addresses, 64-bit machines addresses
are 8 bytes

 * indicates a dereference (as in regular C)

 Like leal; does not do a dereference just with parenthesis

 Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

 Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8

0x400610: 0x00000000004004c8 0x00000000004004be

0x400620: 0x00000000004004c1 0x00000000004004d7

0x400630: 0x00000000004004c8 0x00000000004004be

CREDITS & QUESTIONS

 http://stackoverflow.com/questions/757398/what-

are-some-ways-you-can-manage-large-scale-

assembly-language-projects

 P. 274 of CS:APP – x86_64 Registers

 P. 171 - 221 of CS:APP – Assembly Instructions

 http://www.cplusplus.com/reference/cstdio/sscanf/

http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://www.cplusplus.com/reference/cstdio/sscanf/

