
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Assembly and GDB, 4 Jun 2013

Anita Zhang, Section M

MANAGEMENT AND STUFF

 Bomb Lab due Tues, 11 Jun 2013, 11:59 pm EST

 Apparently for distance students it’s 2 days after

 This is my favorite lab!

 Buf Lab out Tues, 11 Jun 2013, 11:59 pm EST

 Due the week after

 FAQ on the main site

 Has some stuff

 Answers to “Permission denied” errors, etc

WHAT’S ON THE MENU TODAY?

 Help (again)

 Books (again)

 Motivation

 Registers

 Assembly

 Bomb Lab Overview

 GDB

 Walkthrough

 More Bomb Lab

HELPING US, HELPING YOU?

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 Responses within 2 minutes (record!)

 IRC: irc.freenode.net, ##213

 Anita polls it every 3 hours

 Videos on Blackboard

 Everything else, Autolab: autolab.cs.cmu.edu

 Office hours: Sun-Thurs, 6pm – 9pm, Gates 5205

 Both Michael and Anita will be there (mostly)

 We leave at 7:30pm if no one shows up

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

WHAT HAVE YOU READ?

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

DEFINITIONS AND CONVENTIONS

 Register

 Some place in hardware that stores bits

 Caller save

 Saved by the caller of a function

 Before a function call, the caller must save any caller

save register values it wants preserved

 Callee save

 Saved by the callee of a function

 The callee is required to save and restore the values

in these registers if it is using them in the function

INSIGHT FOR THE INQUISITIVE

 Why are we not learning about the stack yet?

 Because x86_64

 “Technology note”

 x86(_64) only

REGISTERS AND ALL THEM BITS

 Quad = 64 bits

 Doubleword = 32 bits

 Word = 16 bits

 Byte = 8 bits

These are all parts of the same register

%rax – 64 bits

%eax – 32 bits

%ax – 16 bits

%ah %al

8 bits 8 bits

WHAT WE’RE WORKING WITH

 General Purpose (x86)

 Caller Save: %eax, %ecx, %edx

 Callee Save: %ebx, %esi, %edi, %ebp, %esp

 x86_64 conventions on the next slide

 Specials

 %eip – instruction pointer

 %ebp – frame pointer

 %esp – stack pointer

 Conditional Flags

 Sit in a special register of its own

 You only need to worry about the ones mentioned later

X86_64, LOTS OF REGISTERS!
64 bits wide 32 bits wide 16 bits wide 8 bits wide 8 bits wide Use

%rax %eax %ax %ah %al Return Value

%rbx %ebx %bx %bh %bl Callee Save

%rcx %ecx %cx %ch %cl 4th Argument

%rdx %edx %dx %dh %dl 3rd Argument

%rsi %esi %si %sil 2nd Argument

%rdi %edi %di %dil 1st Argument

%rbp %ebp %bp %bpl Callee Save

%rsp %esp %sp %spl Stack Pointer

%r8 %r8d %r8w %r8b 5th Argument

%r9 %r9d %r9w %r9b 6th Argument

%r10 %r10d %r10w %r10b Caller Save

%r11 %r11d %r11w %r11b Caller Save

%r12 %r12d %r12w %r12b Callee Save

%r13 %r13d %r13w %r12b Callee Save

%r14 %r14d %rw %14b Callee Save

%r15 %r15d %r15w %15b Callee Save

SOME MORE DEFINITIONS

 Memory Addressing

 How assemblers denote memory locations

 Direct

 Indirect

 Relative

 Absolute

 …

 Syntax differs, addresses do not

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Operations can take several forms:

 Register-to-Register

 Register-to-Memory / Memory-to-Register

 Immediate-to-Register / Immediate-to-Memory

 One address operations (push, pop)

 Did I miss any?

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 x86(_64) Addressing (some kind of indirect)

 Offset(Base, Index, Scale)

 D(Rb, Ri, S)  Mem[Rb + Ri*S + D]

 D can be any signed integer

 Scale is 1, 2, 4, 8 (assume 1 if omitted)

 Assume 0 for base if omitted

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Using parenthesis

 Most of the time parenthesis means dereference

 This is still only x86(_64)

 Examples of parenthesis usage:

 (%eax)

 Contents of memory at address stored, %eax

 (%ebx, %ecx)

 Contents of memory stored at address, %ebx + %ecx

 (%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx

 4(%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx + 4

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Using parenthesis

 Sometimes parenthesis are used just for addressing

 This is still only x86(_64)

 Example

 leal (%ebx, %ecx, 8), destination

 Take the address, %ebx + 8*%ecx

 Does not dereference, uses the calculated value directly

 Examples of not using parenthesis

 %eax

 Use the value in %eax!

 $0x213

 A constant value

REVIEW OF CONDITIONALS/ FLAGS

 Most operations will set conditional flags

 Bit operations

 Arithmetic

 Comparisons…

 Core idea: For conditionals, look one instruction

before it to see whether it is true or false

 Will be explained

FLAGS WE CARE ABOUT

 Carry (CF)

 Arithmetic carry/ borrow

 Parity (PF)

 Odd or even number of bits set

 Zero (ZF)

 Result was zero

 Sign (SF)

 Most significant bit was set

 Overflow (OF)

 Result does not fit into the location

PREP FOR ALL THE CHEAT SHEETS

 Warning: The following slides contain lots of

assembly instructions.

 All from CS:APP (our textbook BTW)

 We’re not going over every single one…

 Use it as a reference for Bomb Lab

 Quick note on Intel vs. AT&T

 This is AT&T syntax (also, Bomb Lab syntax)

 Looks like: “src, dest”

 Intel tends to follow “dest, src”

 Check out their ISA sometime

ALL THE CHEAT SHEETS (MOVEMENT)

Instruction Effect

movb S, D Move byte

movw S, D Move word

movl S, D Move doubleword

movsbw S, D Move byte to word (sign extended)

movsbl S, D Move byte to doubleword (sign extended)

movswl S, D Move word to doubleword (sign extended)

movzbw S, D Move byte to word (zero extended)

movzbl S, D Move byte to doubleword (zero extended)

movzwl S, D Move word to doubleword (zero extended)

pushl S Push double word

popl D Pop double word

ALL THE CHEAT SHEETS (BIT OPS)

Instruction Effect

LEAL S, D D  &S (Load effective address of source into destination)

INC D D D + 1

DEC D D  D – 1

NEG D D  –D

NOT D D  ~D

ADD S, D D D + S

SUB S, D D D – S

IMUL S, D D D * S

XOR S, D D D ^ S

OR S, D D D | S

AND S, D D D & S

SAL k, D D D << k

SHL k, D D D << k

SAR k, D D D >> k (arithmetic shift)

SHR k, D D D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

Instruction Effect

imull S R[%edx]:R[%eax]  S * R[%eax]

Signed full multiply of %eax by S

Result stored in %edx:%eax

mull S R[%edx]:R[%eax]  S * R[%eax]

Unsigned full multiply of %eax by S

Result stored in %edx:%eax

cltd R[%edx]:R[%eax] SignExtend(R[%eax])

Sign extend %eax into %edx

idivl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax]  R[%edx]:R[%eax] ÷ S

Signed divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

divl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax] R[%edx]:R[%eax] ÷ S

Unsigned divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

Instruction Effect

cmpb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 – S2.

cmpw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 – S2.

cmpl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 – S2.

testb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 & S2.

testw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 & S2.

testl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

Instruction Effect

sete/ setz D D  ZF (“set if equal to 0”)

setne/ setnz D D  ~ZF (set if not equal to 0)

sets D D  SF (set if negative)

setns D D  ~SF (set if nonnegative)

setg/ setnle D D  ~(SF ^ OF) & ~ZF (set if greater (signed >))

setge/ setnl D D  ~(SF ^ OF) (set if greater or equal (signed >=))

setl/ setnge D D  SF ^ OF (set if less than (signed <))

setle/ setng D D  (SF ^ OF) | ZF (set if less than or equal (signed <=))

seta/ setnbe D D  ~CF & ~ZF (set if above (unsigned >))

setae/ setnb D D  ~CF (set if above or equal (unsigned >=))

setb/ setnae D D  CF (set if below (unsigned <))

setbe/ setna D D  CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

Instructions Effect

jmp Label Jump to label

jmp *Operand Jump to specified locations

je/ jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF ^ OF) & ~ZF)

jge/ jnl Label Jump if greater or equal (signed) (~(SF ^ OF))

jl/ jnge Label Jump if less (signed) (SF ^ OF)

jle/ jng Label Jump if less or equal (signed) ((SF ^ OF) | ZF)

ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jae/ jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

Instruction Effect

cmove/ cmovz S, R S  R if Equal/ zero (ZF)

cmovne/ cmovnz S, R S  R if Not equal/ not zero (~ZF)

cmovs S, R S  R if Negative (SF)

cmovns S, R S  R if Nonnegative (~SF)

cmovg/ cmovnle S, R S  R if Greater (signed >) (~(SF ^ OF) & ~ZF)

cmovge/ cmovnl S, R S  R if Greater or equal (signed >=) (~(SF ^ OF))

cmovl/ cmovnge S, R S  R if Less (signed <) (SF ^ OF)

cmovle/ cmovg S, R S  R if Less or equal (signed <=) ((SF ^ OF) | ZF)

cmova/ cmovnbe S, R S  R if Above (unsigned >) (~CF & ~ZF)

cmovae/ cmovnb S, R S  R if Above or equal (unsigned >=) (~CF)

cmovb/ cmovnae S, R S  R if Below (unsigned <) (CF)

cmovbe/ cmovna S, R S  R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

Instruction Effect

call Label Push return and jump to label

call *operand Push return and jump to specified location

leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly

(AT&T syntax of source, destination):

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

DR. EVIL AND BOMBLAB

 6 stages, each asking for input

 Wrong input  bomb explodes (lose 1/2 point)

 Each stage may have multiple answers

 You get:

 Bomb executable

 Partial source of Dr. Evil mocking you

 Speed up next phase traversal with a text file

 Place answers on each line

 Run with bomb as ./bomb <solution file>

HOW IT WORKS

 “But how do I find the solutions if I don’t have C

code to work from?”

 Read a lot of bomb disassembly

 All of the phases are just loops and patterns

 Or just dead simple (see the demo)

 GDB

 If you’re not working on a shark machine, your

bomb won’t work.

 Will get “illegal host”

WORKING THROUGH THIS THING

 Read the disassembly

 phase_1, phase_2, phase_3….

 explode_bomb

 Understand what’s going on

 GNU Debugger

 Step through each instruction, examine registers..

 Set up breakpoints

 Make sure to type “kill” when you hit the

explode_bomb breakpoint

 You’re screwed once you hit here, so why not exit?

BUT I DON’T KNOW HOW TO GDB??

 Here have a cheat sheet

 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

 Everything you need to use GDB to solve bomblab

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

FANCY GDB

FANCY GDB COMMANDS

 Layout commands split GDB into cool windows

 May/ may not lag a lot.

 Has a tendency to not work properly sometimes

 layout asm

 Splits GDB into assembly and GDB command

 layout src

 Splits GDB into C source and GDB command

 layout regs

 Splits GDB into register window with either source
or assembly, and GDB command

 Arrow, page up/down to traverse layout windows

 ctrl+x a to switch back to normal GDB

GETTING STARTED

 Download and untar ON A SHARK MACHINE

 shark> objdump –d bomb > disassembly filename

 shark> objdump –t bomb > symbol table filename

 shark> strings bomb > strings filename

 shark> gdb bomb

SPEED UP THE WAIT

 When you have solutions, put it into a text file

 Separate each solution with a newline

 Your bomb will auto-advance completed phases with

pre-filled solutions

 Then when you run gdb next time:

 (gdb)> run solution_file

DEMO TIME

BOMB LAB SPECIFICS

 int sscanf (const char *s, const char *format, ...);

 s

 Source string to retrieve data from

 format

 Formatting string used to get values from the source string

 …

 Depending the format string, one location (address) per

formatter used to hold values extracted from source string

SSCANF EXAMPLE

#include <stdio.h>

int main () {

char sentence []="Rudolph is 12 years old";

char str [20];

int i;

sscanf (sentence,"%s %*s %d",str,&i);

printf ("%s -> %d\n",str,i);

return 0;

}

 Outputs: Rudolph -> 12

RELEVANCE TO BOMB LAB

 Why do we care about sscanf?

 Mostly used to read in arguments

 Note of which locations read in values will be stored

 Important for knowing where arguments will be stored

 And how they will be used

MORE BOMB LAB SPECIFICS

 Jump tables

 In memory is an “array” of locations

 In assembly it is possible to index into this “array”

 Each entry of the array will potentially hold

addresses to the next instruction to go to

JUMP TABLES

 The tip-off is something like this:
 jmpq *0x400600(,%rax,8)

 Empty base means implied 0

 %rax is the “index”

 8 is the “scale”

 In a jump table with addresses, 64-bit machines addresses
are 8 bytes

 * indicates a dereference (as in regular C)

 Like leal; does not do a dereference just with parenthesis

 Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

 Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8

0x400610: 0x00000000004004c8 0x00000000004004be

0x400620: 0x00000000004004c1 0x00000000004004d7

0x400630: 0x00000000004004c8 0x00000000004004be

CREDITS & QUESTIONS

 http://stackoverflow.com/questions/757398/what-

are-some-ways-you-can-manage-large-scale-

assembly-language-projects

 P. 274 of CS:APP – x86_64 Registers

 P. 171 - 221 of CS:APP – Assembly Instructions

 http://www.cplusplus.com/reference/cstdio/sscanf/

http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://www.cplusplus.com/reference/cstdio/sscanf/

