
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Bit Logic and Floating Point, 28 May 2013

Anita Zhang, Section M

WELCOME TO THE SUMMER EDITION

 Data Lab due Mon, 3 Jun 2013, 11:59 pm EST

 2 grace days per lab; don‟t waste them

 Bomb Lab out Tues, 4 Jun 2013, 11:59 pm EST

 After the relevant lecture(s)

 FAQ on the main site

 To be updated…?

ADDITIONAL PROBING

 Questions?

 Progress?

 Autolab?

 Shark?

 > ssh shark.ics.cs.cmu.edu

BECAUSE EVERYONE NEEDS A GUIDE..

 Getting Help

 Literature

 Bits and Bytes and Good Stuff

 IEEE Floating Point

 Data Lab Hints

 General Lab Information

 Question Time

MEET THE TAS

Michael Hansen (mhansen1) Anita Zhang (anitazha)

I NEED HELP):

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 IRC: irc.freenode.net, ##213

 Anita (anitazha) lurks there daily

 Videos on Blackboard

 Everything else, Autolab: autolab.cs.cmu.edu

 Office hours: Sun-Thurs, 6pm – 9pm, Gates 5205

 The cluster with the window

 Both Michael and Anita will be there (mostly)

 Potential Google Hangout to come

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

BOOKS I LIKE

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

RANDOM MOTIVATIONAL STUFF

REPRESENTATION NUTSHELL

 Signed

 The most significant bit represents the sign

 0 for non-negative, 1 for negative

 On x86, the 31st bit (counting from 0)

 Focus on two‟s complement

 Unsigned

 Range from 0 to 2k – 1

 Where k is the number of bits used to represent this value

 Non-negative values

 Byte = 8 bits

WHAT ARE “INTS”?

 int ≠ integer

 Minimum and maximum values are capped by

the number of bits

CASTING MAGIC

 What happens when casting between signed and

unsigned?

CASTING MAGIC

 Signed ↔ Unsigned

 Values are “reinterpreted”

 Bits remain the same

 Mixing signed and unsigned values

 Values are casted to unsigned first

WHAT IS THE SIZE OF….

C Data Type Typical 32-bit IA32 (x86) x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10 or 12 10 or 16

pointer 4 4 8

OPERATIONS

 Bitwise

 AND  &

 OR  |

 NOT  ~

 XOR  ^

 Logical

 AND  &&

 OR  ||

 NOT  !

 Values

 False  0

 True  nonzero

PRO-TIP

 Do not get bitwise and/or logical mixed up!!

 If you are getting weird results, look for this error

SPECIFIC OPERATION STUFF

 Shifting

 Arithmetic

 Preserves the sign bit (sometimes sign-extended)

 Logical

 Fills with zeros (in our case)

 Other bits “fall off” (discarded)

 Both will result in the same left shift

 Undefined if negative shift amount (to be discussed)

SHIFTING MATH

 Multiplication/ division by 2k

 Multiply: left shift by k

 Division: right shift by k

SPECIFIC OPERATION STUFF

 …I lied. Kind of.

SPECIFIC OPERATION STUFF

 Division of a negative number by 2k

 Needs a “bias”

 Division looks like this: (x + (1 << k) - 1) >> k

 x is the value we are dividing

 (1 << k) – 1 is the value we are adding to bias

RANDOM NUMBER STUFF

 Endianness is real

 How bytes are ordered

 Representation in memory

 You‟ll see it in Bomb Lab (next week)

 Random example: 0x59645322

 Big: (lower) 59 64 53 22 (higher)

 Little: (lower) 22 53 64 59 (higher)

Endian
First byte

(lowest address)
Middle bytes

Last byte

(highest address)

big Most significant ... Least significant

little Least significant ... Most significant

FRACTIONAL BINARY

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• • •

(QUICK AND DIRTY) FLOATING POINT

 What is this floating point stuff?

 Another type of data representation

 Enables support for a wide ranges of numbers

 Symmetric on its axis (has ±0)

(QUICK AND DIRTY) FLOATING POINT

 Consists of 3 parts

 Sign bit

 Exponent bits

 Fraction bits (the “mantissa”)

 Getting the floating point

 Value  (-1)s x M x 2E

 S  sign

 M  mantissa

 E  shift amount (exponent bits uses „e‟ or „exp‟)

 Bias  2k-1 – 1

 Used in the math to convert between actual values and

floating point values

(QUICK AND DIRTY) FLOATING POINT

 For single precision (32 bit) floating point:

 Fraction (frac): 23 bits

 Exponent (exp): 8 bits

 Sign (s): 1 bit

 Bias = 127

(QUICK AND DIRTY) FLOATING POINT

 exp ≠ 00…0

 exp ≠ 11…1

 E = exp – bias

 M = 1.xxxxxx

 xxxxxx is the frac

 Implied leading 1

 exp = 00..0

 E = 1 – bias

 M = 0.xxxxxx

 xxxxxx is the frac

 Leading 0

 frac = 0 means ±0

Normalized Denormalized

SPECIAL CASES

 exp = 11….1

 frac = 00…0

 Division by 0, ± ∞

 exp = 11….1

 frac ≠ 00…0

 sqrt(-1), ∞ - ∞, ∞ x 0

Infinity Not a Number

SPECIAL CASES

 BTW, infinity and NaN are not the same

 Infinity is “overflow”

 NaN is not a number

 “Mathematically undefined” in my book

 Be aware of this for float_abs()

LEGIT FLOATING POINT RULES

 Rounding

 Rounds to even

 Used to avoid statistical bias

 1.1011  1.11 (>1/2, up)

 1.1010 1.10 (1/2, down)

 1.0101 1.01 (>1/2, down)

 1.0110  1.10 (1/2, up)

 Addition and Multiplication…

 Are lies

 Associativity/ distributivity may not hold

 3.14 + (1e20 – 1e20) vs. (3.14 + 1e20) – 1e20

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3

9

3/16

15/2

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Floating Point Bits (Rounded) Value

001 00 1/4

100 10 3

110 00 8

000 11 3/16

111 11 NaN

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3 100 10 3

9 110 00 8

3/16 000 11 3/16

15/2 110 00 8

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110

010 1001

110 1111

000 0001

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110 1001 111

010 1001 0110 100

110 1111 1011 000

000 0001 0001 000

DATA LAB OTHER STUFF

 Use the tools

 ./driver.pl

 Exhaustive autograder (uses provided tools)

 ./bddcheck/check.pl

 Exhaustive

 ./btest

 Not exhaustive

 ./dlc

 This one will hate you if you‟re not writing C like it‟s 1989

 Declare all your variables at the beginning of the function

DATA LAB TOOLS

 Extra tools

 ./fshow value

 Where value is a hex or decimal number for a floating point

 Shows the hex for value and breaks it down into the floating

point parts (sign, exponent, fraction)

 Single precision floating point

 ./ishow value

 Where value is a hex or decimal number

 Outputs value in hex, signed, and unsigned

 32-bits

DATALAB OTHER STUFF

 Operator precedence
 There are charts. Google them.

 bitCount
 Divide and conquer

 isPower2
 Actually do and write down operations on paper

 float_i2f
 You will need to round

 Undefined behavior
 Shifting by 32

 And why you get strange results

UNDEFINED BEHAVIOR (ADV. TOPIC)

“These instructions shift the bits in the first operand

(destination operand) to the left or right by the number of

bits specified in the second operand (count operand). Bits

shifted beyond the destination operand boundary are first

shifted into the CF flag, then discarded. At the end of the

shift operation, the CF flag contains the last bit shifted out

of the destination operand.

The destination operand can be a register or a memory

location. The count operand can be an immediate value or

register CL. The count is masked to five bits, which limits

the count range to 0 to 31. A special opcode encoding is

provided for a count of 1.”

LABS, IN GENERAL

 Aim to do all your work on our Shark machines

 Obtain a terminal/ SSH client of sorts

 Use the following command

 ssh andrewID@shark.ics.cs.cmu.edu

 andrewID is your Andrew ID

 shark can be replaced with a specific shark hostname

 If left as shark, you will be assigned a random shark

 tar xvf labhandout.tar

 Untarring on the Unix machines may prevent headaches

 Work out of your private directory

 Use a text editor straight from the Shark machine

 Vim, emacs, gedit, nano, pico…

QUESTIONS & CREDITS PAGE

 http://www.superiorsilkscreen.com

 http://www.wikipedia.org/

 http://www.cs.cmu.edu/~213/

 http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

 Intel x86 Instruction Set Reference

http://www.superiorsilkscreen.com/
http://www.superiorsilkscreen.com/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.cs.cmu.edu/~213/
http://www.cs.cmu.edu/~213/
http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

