
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Threading and Proxy, 30 July 2013

Anita Zhang, Section M

ANNOUNCEMENTS

 Proxy Lab

 No partners

 Due next Wednesday, August 7, 2013, 11:59 PM

 Cash in your late days

 Next week: Exam Review

 If you want me/Michael to do specific problems or

review specific topics, email the list

ROUTE FOR TODAY

 Networking Functions “Detailed”

 Threads and Mutual Exclusion

 With examples

 And maybe demos

 Git

 Reader-Writer Locks

 Proxy (and You!)

 Rations, Extras, and Demos

 Some (important) stuff not from recitation

WHY THESE HELPER FUNCTIONS?

 Just raw socket, bind, connect, listen are

complicated

 Look in csapp.c… So many arguments and fields

 To save you from the pain of figuring out how to

wrestle these functions, we made these helpers

 Combines multiple system calls into few friendly functions!

SERVERS: OPEN_LISTENFD

 int open_listenfd(int port)

 CSAPP wrapper

 Contains proper error handling using uppercase functions

 Performs 3 functions in one!

 socket

 bind

 listen

 Returns a file descriptor used for accept and to read

from and write to a client.

CLIENTS: OPEN_CLIENTFD

 int open_clientfd(char *hostname, char *port)

 CSAPP wrapper

 Contains proper error handling using uppercase functions

 Performs 2 functions in one!

 socket

 connect

 Note that the port is taken as a char *, not an int

 Falls in line with the string parsing you’ll be doing

 Returns a file descriptor used to write headers and

read back from a server.

GETADDRINFO

 Remember thread-safety and gethostbyname?

 int getaddrinfo(const char *node,
const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

 Reentrant! Thread-safe!

 Fills out the provided struct addrinfo ** with

addresses you can use when calling connect

 Field definitions:

 node – hostname

 service – port

 hints – Used to select from the res arg. NULL for this lab.

 res – Linked list of socket address structures

READ/WRITE FOR CLIENT/SERVER

GETADDRINFO – THE RES ARGUMENT

 The res field

 User only needs to pass in a struct addrinfo *

 getaddrinfo creates a dynamically allocated linked

list so you only need to point to that list

 Only fields from addrinfo we care about for connect

 ai_addr

 ai_addrlen

 Iterate over all the elements until connect succeeds

 StackOverflow can tell you why…

 Replacing gethostbyname with getaddrinfo
only affects connect, not socket

http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo

REVIEW: THREADS MODEL

stack

stack

stack

heap

data

code

registers

registers

registers

MUTUAL EXCLUSION

 Mutexes

 Only one thread in a section at a time

 Called the “critical section”

 Essentially, locking

 Other threads must wait to enter

 Mutual exclusion

 Semaphores

 Fixed number of threads run the code at a time

 Mutexes are a special case of semaphores initialized to 1

 Examples to follow

EXAMPLE: N2

 Example brought to you by Tommy Klein

 Let's write a multithreaded program!

 Spawns N threads

 Each thread stores the current value of a global variable

 Increments by 1, N times

 Writes the result back into the global variable

 When threads finish running, print the global

 Result: N2

EXAMPLE: N^2 (WITHOUT LOCKS)

#include <pthread.h>

#include <semaphore.h>

#include <stdio.h>

#define N 1000

static unsigned int global = 0;

//Have a thread add N to the global variable

void* threadFunc(void* vargp) {

int i = 0;

unsigned int locGlob = global;

for (i = 0; i < N; i++)

locGlob = locGlob + 1;

global = locGlob;

return NULL;

}

int main()

{

pthread_t tids[N];

pthread_t tid;

int i = 0;

for (i = 0; i < N; i++) //Spawn n threads

pthread_create(tids+i,NULL,threadFunc,NULL);

for (i = 0; i < N; i++) //Wait for finish

pthread_join(tids[i], NULL);

printf("%u\n",global);

return 0;

}

EXPECTED/DESIRED BEHAVIOR

 Thread 1: read global=0 into globLoc

 Thread 1: add 1000 to globLoc

 Thread 1: write global=globLoc=1000

 Thread 2: read global=1000...

ACTUAL BEHAVIOR

 Thread 1: read global=0 into globLoc

 Thread 2: read global=0 into globLoc

 ….

 Results will vary

INSERT DEMO HERE

 Let’s see this in action!

 Note: When at home, compile with the following

 gcc filename.c –pthread –o outname

 – pthread support for the pthreads library

 –o specifies an output filename

ACHIEVING OUR GOALS

 Ensure each thread read/writes the correct value

 Key: Synchronize access to the critical section

 Use a mutex to serialize access to the global variable

 Special notes for this example

 This will cause the code to run sequentially

 Thread overhead will actually give worse

performance compared to a sequential solution

EXAMPLE FIXED: N^2 (WITH LOCKS)

#include <pthread.h>

#include <semaphore.h>

#include <stdio.h>

#define N 1000

static unsigned int global = 0;

sem_t mutex;

//Have a thread add N to the global variable

void* threadFunc(void* vargp)

{

int i = 0;

sem_wait(&mutex); //Start critical code

unsigned int locGlob = global;

for (i = 0; i < N; i++)

locGlob = locGlob + 1;

global = locGlob;

sem_post(&mutex); //End critical code

return NULL;

}

int main()

{

pthread_t tids[N];

pthread_t tid;

//Initialize semaphore to allow only 1 thread

sem_init(&mutex,0,1);

int i = 0;

for (i = 0; i < N; i++) //Spawn n threads

pthread_create(tids+i,NULL,threadFunc,NULL);

for (i = 0; i < N; i++) //Wait for all finish

pthread_join(tids[i], NULL);

printf("%u\n",global);

return 0;

}

INSERT OTHER DEMO HERE

 Now with locks!

MULTI-THREADED CACHE

 Why bother?

 Sequential accesses are bottlenecks

 We have parallel proxies!

 Multiple threads can read from a cache safely

 Cache search and return blocks

 No race when there are only reads

 But what about writes!?

 Overwriting while another thread is reading?

 Two threads writing to same cache block?

 These are BAD THINGS™

READER-WRITER LOCKS

 Key idea: Cache can be read in parallel safely

 If thread is writing, no other thread can read or write

 Exclusive write access

 If thread is reading, no other thread can write

 Concurrent read access

 Potential issues

 Write starvation

 Reader threads block out writer threads

 Fix: Prioritize writers

 Read starvation

 Aim for a fair policy

READER-WRITER LOCKS

 “How do I make a reader-writer lock?”

 Luckily, you don't have to!

 pthread_rwlock_* functions handle that for you

 pthread_rwlock_t lock;

 Defining a lock (example)

 pthread_rwlock_init(&lock, NULL);

 Initializes the lock with attributes. NULL is default.

 pthread_rwlock_rdlock(&lock);

 Reader locks a region

 pthread_rwlock_wrlock(&lock);

 Writer locks a region

 pthread_rwlock_unlock(&lock);

 Unlocks a lock

DOING PROXY

 Work division

 Two main components of this lab

 “Proxy”

 Making connections and sending data back and forth

 Threading is a small component that build on this

 “Caching”

 Collecting web objects and forwarding properly

 Use Git for version control

 Somewhat less important without partners

 Useful for keeping track of changes that might break

your proxy

GIT

 What is this “Git” thing?

 Version Control System (VCS)

 Keeps history

 Revision control

 Widely used

 And is on all campus machines

 Repository options

 GitHub

 BitBucket

 AFS

GIT BASIC COMMANDS

 git clone

 git pull

 git add <file or option>

 git commit

 git push

 There is (was?) a StuCo on Git

 98-174: Modern Version Control with Git

http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/

GIT ON SHARKS/ UNIX

 May run into errors pushing/pulling from AFS

 Needs you to set up SSH keys

 Generating SSH keys (from GitHub)

https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys

WHAT YOUR PROXY SHOULD DO

 Access most sites

 reddit, Vimeo, CNN, YouTube...

 POST operations (sending data) will not work

 Login boxes, comment boxes…

 Only required to support GET requests

 Feel free to do POST too

 Anything HTTPS or SSL related will not work

 Cache requests

 Size limit

 LRU eviction policy

 Must allow for concurrent reads

 Read the write-up

PROXY AND YOU

 Previously: You write code for your use

 Now: You write code for a user

 Your proxy must be robust

 Cannot crash for any reason

 Expect garbage inputs

 Malformed web addresses, any requests…

 Never trust the user

 Assume monkeys and cats

 See: O.S. Boot Camp Slides (slide 3)

http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf

CATS ON KEYBOARDS

PROXY AND YOU

 Memory management

 (Always) free what you malloc

 Web servers/ proxies expected to run “forever”

 Memory leaks add up

 Can’t (don’t want to) always have to restart

 Includes: crashes, exceptions, memory leaks…

 Prof. Koopman has some commentary on this

PROXY LAB

 Test extensively!

 No autograded feedback

 Browse sites with Firefox and your proxy

 Try to break your proxy

 Ask staff if you’re unsure about functionality

 What should/shouldn't be working on your proxy

 Start early.. Maybe now

 Not as time-consuming as malloc

 String parser in C is tedious and half the battle

 Keep testing

 Always find new ways to break your proxy

PROXY RATIONS

 Materials we provide

 ./port_for_user.pl andrewID

 Returns a port number for your use

 Tiny Web server

 Basic example of a web server

 CS:APP source and header files

 Use and modify as you see fit

 proxy.c

 Put relevant code here

 You are not limited to one file

 Makefile

 Has relevant flags for pthread compilation

 Update this when you start new files

THREAD SAFETY, REENTRANCY, & CSAPP

 Do not blindly use the provided wrappers

 Wrappers may not have the desired behavior

 Most are designed to exit on failure

 Is that really what you want?

 Beware of thread-unsafe/ non-reentrant functions

 gethostbyname(), gethostbyaddr()….

 Pretty much anything that returns a pointer

 “But why!?”

 “Well.. Depends on where that pointer is coming from”

 The pthread/lpthread flags may help you

 Useful stackoverflow post

http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe

TINY/ PROXY DEMO

 Insert Godzilla here

 And using your proxy with Firefox

CREDITS ONLY

 StackOverflow on getaddrinfo

 98-174: Modern Version Control with Git

 Generating SSH Keys (GitHub)

 15-410 (OS) Boot Camp Slides

 Cat on a Keyboard

 StackOverflow on malloc

http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo
http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.kittykeyboardkover.com/images/1683_500x300.jpg
http://stackoverflow.com/questions/855763/malloc-thread-safe

