ANITA’S SUPER AWESOME

@ RECITATION SLIDES

15/18-213: Introduction to Computer Systems
Py Threading and Proxy, 30 July 2013

Anita Zhang, Section M

ANNOUNCEMENTS
Proxy Lab

No partners

Due next Wednesday, August 7, 2013, 11:59 PM
Cash in your late days

Next week: Exam Review

If you want me/Michael to do specific problems or
review specific topics, email the list

ROUTE FOR TODAY

Networking Functions “Detailed”

Threads and Mutual Exclusion
With examples
And maybe demos

Git
Reader-Writer Locks
Proxy (and You!)

Rations, Extras, and Demos
Some (Iimportant) stuff not from recitation

WHY THESE HELPER FUNCTIONS?

Just raw socket, bind, connect, listen are
complicated
Look 1n csapp.c... So many arguments and fields

To save you from the pain of figuring out how to
wrestle these functions, we made these helpers
o Combines multiple system calls into few friendly functions!

SERVERS: OPEN_LISTENFD

int open_listenfd(int port)
CSAPP wrapper

Contains proper error handling using uppercase functions

Performs 3 functions in one!
socket
bind
Tisten

Returns a file descriptor used for accept and to read
from and write to a client.

CLIENTS: OPEN_CLIENTFD

int open_clientfd(char *hostname, char *port)
CSAPP wrapper

Contains proper error handling using uppercase functions

Performs 2 functions in one!
socket
connect

Note that the port is taken as a char *, not an 1nt
Falls in line with the string parsing you’ll be doing

Returns a file descriptor used to write headers and
read back from a server.

GETADDRINFO

Remember thread-safety and gethostbyname?

int getaddrinfo(const char *node,
const char *service,
const struct addrinfo *A7nts,
struct addrinfo **res);

Reentrant! Thread-safe!

Fills out the provided struct addrinfo ** with
addresses you can use when calling connect

Field definitions:
node — hostname
service — port
hints — Used to select from the res arg. NULL for this lab.
res — Linked list of socket address structures

READ/WRITE FOR CLIENT/SERVER

Client Server
3
socket socket
bind » open_listenfd
open clientfd < l
listen
Connection l /
request
L connect [--------oeooooo- » accept -
L L
Client)(rio_writen > rio_read.'l.ineb
Server l l . .
Sessi Await connection
ession
r:l.o_read.'l.:l.neb + r:l.o_wr:l.ten request from
next client
Y Y
close |___EOF s> ric readlineb
) 4
close

(GETADDRINFO — THE RES ARGUMENT
The res field

User only needs to pass in a struct addrinfo *

getaddrinfo creates a dynamically allocated linked
list so you only need to point to that list

Only fields from addrinfo we care about for connect
o ai_addr
oai_addrlen

Iterate over all the elements until connect succeeds
o StackOverflow can tell vou why...

Replacing gethostbyname with getaddrinfo
only affects connect, not socket

http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo

REVIEW: THREADS MODEL

stack l
stack l
stack l

heap

data

code

registers

registers

registers

MUTUAL EXCLUSION

Mutexes
Only one thread in a section at a time

Called the “critical section”
Essentially, locking

Other threads must wait to enter
Mutual exclusion
Semaphores
Fixed number of threads run the code at a time

Mutexes are a special case of semaphores initialized to 1
Examples to follow

EXAMPLE: N2

Example brought to you by Tommy Klein

Let's write a multithreaded program!
Spawns N threads

Each thread stores the current value of a global variable

Increments by 1, N times
Writes the result back into the global variable

When threads finish running, print the global
Result: N2

EXAMPLE: NA2 (WITHOUT LOCKS)

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#define N 1000

static unsigned int global = 0;

//Have a thread add N to the global variable
void* threadFunc(void* vargp) {
int i = 0;

unsigned int locGlob = global;

for (i =0; 1 < Nj; i++)

TocGlob = TocGlob + 1;

global = TocGlob;
return NULL;

int mainQ

{
pthread_t tids[N];
pthread_t tid;

int i = 0;

for (i = 0; i < N; i++) //Spawn n threads
pthread_create(tids+i,NULL,threadFunc,NULL);

for (i = 0; i < N; i++) //wait for finish
pthread_join(tids[i], NULL);

printf("%u\n",global);

return 0;

EXPECTED/DESIRED BEHAVIOR

Thread 1:
Thread 1:
Thread 1:
Thread 2:

read global=0 into globLoc
add 1000 to globL.oc

write global=globL.oc=1000
read global=1000...

ACTUAL BEHAVIOR

Thread 1: read global=0 into globL.oc
Thread 2: read global=0 into globL.oc

Results will vary

INSERT DEMO HERE

Let’s see this in action!
Note: When at home, compile with the following

gcc filename.c —pthread —o outname
— pthread support for the pthreads library
—o specifies an output filename

ACHIEVING OUR GGOALS

Ensure each thread read/writes the correct value
Key: Synchronize access to the critical section
Use a mutex to serialize access to the global variable

Special notes for this example

This will cause the code to run sequentially

Thread overhead will actually give worse
performance compared to a sequential solution

EXAMPLE FIXED: N*2 (WITH LOCKS)

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#define N 1000

static unsigned int global = 0;

sem_t mutex;

//Have a thread add N to the global variable
void* threadFunc(void* vargp)
{

int i = 0;

sem_wait(&mutex); //Start critical code

unsigned int locGlob = global;

for (i =0; i < N; i++)

TocGlob = TocGlob + 1;

global = locGlob;
sem_post(&mutex); //End critical code
return NULL;

int mainQ

{
pthread_t tids[N];
pthread_t tid;

//Initialize semaphore to allow only 1 thread
sem_init(&mutex,0,1);

int i = 0;

for (i = 0; i < N; i++) //Spawn n threads
pthread_create(tids+i,NULL,threadFunc,NULL);

for (i = 0; i < N; i++) //wait for all finish
pthread_join(tids[i], NULL);

printf("%u\n",global);

return 0;

INSERT OTHER DEMO HERE

o Now with locks!

MULTI-THREADED CACHE
Why bother?

Sequential accesses are bottlenecks

We have parallel proxies!

Multiple threads can read from a cache safely
Cache search and return blocks
No race when there are only reads

But what about writes!?

Overwriting while another thread is reading?

Two threads writing to same cache block?
These are BAD THINGS™

READER-WRITER LOCKS

Key 1dea: Cache can be read in parallel safely
If thread 1s writing, no other thread can read or write

o Exclusive write access
If thread is reading, no other thread can write
o Concurrent read access
Potential 1ssues

Write starvation
o Reader threads block out writer threads

o Fix: Prioritize writers
Read starvation
Aim for a fair policy

READER-WRITER LOCKS

“How do I make a reader-writer lock?”
Luckily, you don't have to!

pthread_rwlock_* functions handle that for you

pthread_rwlock_t lock;

Defining a lock (example)
pthread_rwlock_init(&lock, NULL);

Initializes the lock with attributes. NULL 1s default.
pthread_rwlock_rdlock(&lock);

Reader locks a region
pthread_rwlock_wrlock(&lock);

Writer locks a region
pthread_rwlock_unlock(&lock);

Unlocks a lock

DOING PROXY

Work division

Two main components of this lab
“Proxy”
Making connections and sending data back and forth
Threading is a small component that build on this
“Caching”
Collecting web objects and forwarding properly

Use Git for version control
Somewhat less important without partners

Usetul for keeping track of changes that might break
your proxy

GIT

What 1s this “Git” thing?
Version Control System (VCS)
Keeps history

Revision control

Widely used
And 1s on all campus machines
Repository options
GitHub
BitBucket
AFS

GIT BASIC COMMANDS

o git clone
o git pull
o git add <file or option>
o g1t commit
o g1t push
o There 1s (was?) a StuCo on Git
e 98-174: Modern Version Control with Git

http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/

GIT ON SHARKS/ UNIX

o May run into errors pushing/pulling from AFS
» Needs you to set up SSH keys

o Generating SSH kevys (from GitHub)

https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys

WHAT YOUR PROXY SHOULD DO

Access most sites
reddit, Vimeo, CNN, YouTube...
POST operations (sending data) will not work

o Login boxes, comment boxes...
o Only required to support GET requests
Feel free to do POST too

Anything HTTPS or SSL related will not work

Cache requests
Size limit
LRU eviction policy
Must allow for concurrent reads
Read the write-up

PROXY AND YOU

Previously: You write code for your use
Now: You write code for a user

Your proxy must be robust
Cannot crash for any reason
Expect garbage inputs
o Malformed web addresses, any requests...

Never trust the user

o Assume monkeys and cats

See: 0.S. Boot Camp Shides (slide 3)

http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf

CATS ON KEYBOARDS

PROXY AND YOU

Memory management
(Always) free what you malloc
Web servers/ proxies expected to run “forever”
o Memory leaks add up

Can’t (don’t want to) always have to restart
o Includes: crashes, exceptions, memory leaks...
o Prof. Koopman has some commentary on this

PROXY LAB

Test extensively!
No autograded feedback
Browse sites with Firefox and your proxy
Try to break your proxy
Ask staff if you’re unsure about functionality
What should/shouldn't be working on your proxy
Start early.. Maybe now

Not as time-consuming as malloc
String parser in C is tedious and half the battle

Keep testing

Always find new ways to break your proxy

PROXY RATIONS

Materials we provide
Jport_for_user.pl andrewlID

Returns a port number for your use
Tiny Web server

Basic example of a web server
CS:APP source and header files

Use and modify as you see fit
Proxy.c

Put relevant code here

You are not limited to one file

Makeftile

Has relevant flags for pthread compilation
Update this when you start new files

THREAD SAFETY, REENTRANCY, & CSAPP

Do not blindly use the provided wrappers

Wrappers may not have the desired behavior

Most are designed to exit on failure
o Is that really what you want?

Beware of thread-unsafe/ non-reentrant functions
gethostbyname(), gethostbyaddr()....
Pretty much anything that returns a pointer
o “But why!?”
o “Well.. Depends on where that pointer is coming from”

o The pthread/lpthread flags may help you
Useful stackoverflow post

http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe
http://stackoverflow.com/questions/855763/malloc-thread-safe

TINY/ PROXY DEMO

Insert Godzilla here
And using your proxy with Firefox

CREDITS ONLY

o StackOverflow on getaddrinfo

0 98-174: Modern Version Control with Git
o Generating SSH Keys (GitHub)

0 15-410 (OS) Boot Camp Slides

o Cat on a Keyboard

o StackOverflow on malloc

http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo
http://stackoverflow.com/questions/11572843/is-it-necessary-to-attempt-to-connect-to-all-addresses-returned-by-getaddrinfo
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
http://www.contrib.andrew.cmu.edu/~cakrivou/98174/
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf
http://www.kittykeyboardkover.com/images/1683_500x300.jpg
http://stackoverflow.com/questions/855763/malloc-thread-safe

