Andrew login I1D:
Full Name:

Recitation Section:

CS 15-213, Spring 2008

Final Exam
Tue. May 6, 2008

Instructions:

e Make sure that your exam is not missing any sheets, then yaitefull name, Andrew login ID, and
recitation section (A—H) on the front.

e Write your answers in the space provided below the probldmyou make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 72 points.

e This exam is OPEN BOOK. You may use any books or notes you Ide. calculators or other
electronic devices are allowed.

e Good luck!

1(12):

2 (9):

3 (10):

4 (7):

5 (8):

6 (6):

7 (6):

8 (8):

9 (6):

TOTAL (72):

Page 1 of 19

Problem 1. (12 points):

The following problem concerns virtual memory and the wayuél addresses are translated into physical
addresses. Below are the specifications of the system oruhedranslation occurs.

e The system is a 16-bit machine - words are 2 bytes.

Memory is byte addressable.

The maximum size of a virtual address space is 64KB.

The system is configured with 16KB of physical memory.

The page size is 64 bytes.

The system uses a two-level page tables. Tables at botts lakel64 bytes (1 page) and entries in
both tables are 2 bytes as shown below.

In this problem, you are given parts of a memory dump of thitesy running 2 processes. In each part
of this question, one of the processes will issue a single ongmoperation (read or write of one byte) to
a single virtual address (as indicated in each part). Yoorigao figure out which physical addresses are
accessed by the process if any, or determine if an error isugttered.

Entries in the first and second level tables have in theirdoder bits flags denoting various access permis-
sions.

15 2 1 0

| Page Table Base Address | P|
Page Directory Entry

| Page Address \ [U[W][P]

Page Table Entry

e P =1= Present
e W =1 = Writable (applies both in kernel and user mode)

e U=1= User-mode

The contents of relevant sections of memory is shown on thegage. All numbers are given hexadec-
imal.

Page 2 of 19

Address | Contents
0118 2381
0130 2101

0160 2281
018E 1581
019C 1201
01B8 1A01
120A 2701
1214 27C1
1228 2741
158A 25C1
1594 2541
15A8 2501
1A0A 2041
1A14 20C1
1A28 2081

2106 3FC7
210C 3A47
2118 3587
2286 3107
228C 3447

2298 3007
2386 33C7
238C 3887
2398 3247

For the purposes of this problem, omitted entries have cosite 0.

Page 3 of 19

Process 1 is a processuiser mode (e.g. executing part ai n()) and has page directory base address
0x0100.

Process 2 is a process kernel mode (e.g. executingraead() system call) and has page directory base
addres$9x0180.

For each of the following memory accesses, first calculatEfilinin the address of the page directory entry
and the page table entry. Then, if the lookup is successitg, the physical address accessed. Otherwise,
circle the reason for the failure and give the address ofdbketentry causing the failure. You may use the
16-bit breakdown table if you wish, but you are not requiredilt it in.

1. Process 1 writes toxC1B2.
Scratch space:

15 |14 |13 |12 |11 |10 |9 8 7 6 5 4 3 2 1 0

(a) Address of PDEOX |

(b) Address of PTEOX |

(c) The result of the address translation is (write NONE & thanslation does not result in a valid
address) OX |

(d) The result of the access is (circle EXACTLY one):

success / page not present / page not writable / illegal npefgisor access

Page 4 of 19

2. Process 2 writes t0x 728F. Scratch space:

15 |14 |13 |12 |11 |10 |9 8 7 6 5 4 3 2 1 0

(a) Address of PDEOX |

(b) Address of PTEOX |

(c) The result of the address translation is (write NONE & translation does not result in a valid
address)|0X |

(d) The result of the access is (circle EXACTLY one):

success / page not present / page not writable / illegal npefsisor access

If it’s there and you can see it - it'’s real. |If it’s not there and you
can see it - it’s virtual. |If it’'s there and you can't see it - it’'s
transparent. If it’s not there and you can’'t see it - you erased it!

- I BM poster explaining virtual nenory, 1978.

Page 5 of 19

Problem 2. (9 points):

Consider a 12-bit IEEE floating-point representation with:
e 1 sign bit
e 4 exponent bits (therefore the bigs=2*"1 -1 =7)

e 7 mantissa bits

Fill in all the blanks in the following table. In the process of conmgrtsome numbers to their bit repre-
sentations, you might have to round up or down. If you do, patrbunded value in the “Rounded Value”
column. If you didn’t have to round, put a line through thawvi®“Rounded Value” cell. You should use
“round to even” when rounding is needed.

Number Bit representation Rounded Value

32.125

1L
2048

—255.25

0 1111 0000000 _—

0 0000 0110000 _

0 1001 1111111 _

Page 6 of 19

Problem 3. (10 points):

Consider the following x86-64 assembly function, called.fo

foo: #rdi =t, rsi =v
pushq % 12
pushq % bp
pushq % bx

. LCFI 2:
nov(q % di , 9% bx
nmovq %Wsi, %12
testq % di, % di
je . L3
nmovl| (% si), %bp
cnpl 24(% di), Y%ebp
j ne .L12
jm . L5

. L7:
cnpl %ebp, 24(% bx)
j ne .L12

. L5:
| eal 1(% bp), %edx
nmov(q 16(% bx), % ax
addl (% ax, % dx, 4), %bp
nmovl Y%ebp, %Yeax
jm . L8

. L12:
novq 0% 12, 9% si
nmovq (% bx), % di
cal l foo
testl Y%eax, %Yeax
je . L9
nmovl Y%ebp, %Yeax
jm . L8

. L9:

nmovq 8(% bx), % bx
testq o bx, % bx

j ne . L7
. L3:
nmovl| $0, Y%eax
. L8:
popq % bx
popq % bp
popq % 12

ret

Page 7 of 19

Fill in the blanks of the corresponding C code.

e The function used the data structure "Node” as defined below:

struct Node {
struct Node =*left;
struct Node =*right;
unsi gned int =*val ue;
unsi gned i nt i ndex;

b

e You may use only the C variable names that are defined, noetister names.

int foo(t , unsigned int * v) {
if (t =___)
return O;
i f() |
return
}
return (?

Page 8 of 19

Problem 4. (7 points):

Consider the following C code and disassembly of functiam fo

int main()

{

char *src = "sone string";
char dest[20];

foo(44,

return O

}

Src,

void foo(int argl

{

whi | e(*arg2)

*(arg3++) =

}

0x00001fc5
0x00001fc6
0x00001fc8
0x00001fch
0x00001f cd
0x00001f dO
0x00001f d3
0x00001f d6
0x00001f d8
0x00001f db
0x00001f dd
0x00001f e0
0x00001f e2
0x00001f e5
0x00001f e7
0x00001f ea
0x00001f ed
0x00001f ef
0x00001ff1
0x00001ff 2

<f 00+0>:
<f oo+1>:
<f 00+3>:
<f 00+6>:
<f 00+8>:

<f oo+11>:
<f 00+14>:
<f 00+17>:
<f 00+19>:
<f 00+22>:
<f 00+24>:
<f 00+27>:
<f 00+29>:
<f 00+32>:
<f 00+34>:
<f 00+37>:
<f 00+40>:
<f 00+42>:
<f 00+44>:
<f 00+45>:

dest);

char *arg2,

push
nov
sub
jm
nov
novzbl
nov
add
nov
nov
| ea
i ncl
| ea
i ncl

novzbl
t est
j ne
| eave
ret

char xar g3)

x(arg2++) + argl

%ebp
%esp, Yebp
$0x8, Yesp
Ox1f e7 <foo+34>
Oxc(%ebp) , Yeax
(%eax) , Y%edx
0x8(%ebp) , Yeax
Yeax, Yedx
0x10(%ebp) , Yeax
%l , (Y%eax)
Oxc(%ebp) , Yeax
(Y%®eax)
0x10(%ebp) , Yeax
(Y%eax)
Oxc(%ebp) , Yeax
(%eax) , Y%eax
%al , Yal
0x1f cd <foo+8>

Page 9 of 19

While debugging the above code, you open a GDB session andgirexahe stack at the entry point to foo.

(gdb) break foo
Breakpoint 1 at Oxlfchb

(gdb) run

Breakpoi nt 1, 0x00001fcb in foo ()

(gdb) x/ 40w $esp

Oxbf fff 8f0:
Oxbf fff900:
Oxbffff910:
Oxbf fff 920:
Oxbf f f f 930:
Oxbf f f f 940:
Oxbf fff 950:
Oxbf f f f 960:
Oxbf fff970:
Oxbf f f f 980:

0x00000000
0x0000002c
0x00000000
0x00000000
0x00000000
0x00000001
0x00000000
0x00000001
Oxbf f f fada
Oxbffffacl

0x00000009
0x00001ff 3
0x00000000
0x00000000
Oxbffff9cc
Oxbf fff 964
0x00000000
Oxbffffof4
Oxbf fffab6
Oxbffffaf6

Oxbf fff938
Oxbffff918
0x00000000
0x8f e0154b
Oxbf fff95c
Oxbf fff96¢c
0x00000000
0x00000000
Oxbffffa77
Oxbf f f f bOf

0x00001f ba
0x8f e005bc
0x00000000
0x00001ff 3
0x00001f 5e
Oxbf fff9cc
0x00000000
Oxbffffall
Oxbf fffa87
Oxbffffb3b

Using the above information, please fill in the addresseshi®following objects. Objects that correspond
to variables are written in bold. Do not write tv@lues of any of the items in the table, write only their
addresses.

Object Address

src[0]

dest[0]

argl

arg2

arg3

caller’s return address

caller's saved base pointe

=

Page 10 of 19

Problem 5. (8 points):

The problem requires understanding how C code accessmgfstes, unions, and arrays is compiled. As-
sume the x86-64 conventions for data sizes and alignments.

#i ncl ude "def. h"

typedef struct {
int x[A[B]; /* Unknown constant A and B x/
doubl e v;

} stri;

t ypedef struct{
strl datalB]; /* Unknown constant B =*/
int idx;

} str2;

t ypedef uni on{
float t
str2 §[3];
strl V;

} uni;

void setVal (str2 =*p, double val) {
int i = p->idx;
p->datal i].y = val;

}

You do not have a copy of the file def.h, in which constants ARmde defined, but you have the following
x86-64 assembly code for the function setVal:

set Val :
#rdi = p, rsi =va
nmovsl q 1728(% di), % ax
| eaq (% ax, % ax, 2), % ax

sal g $6, % ax
novq % si, 184(% ax, % di)
ret

Based on this code, determine the values of the two consdadtthe size of the union:

A =

Size of uni =

Page 11 of 19

Problem 6. (6 points):

The 15-213 i sh nachi nes contain Intel XeorNocona processors. The L1 data cache organization is
as follows.

e 16 kilobyte total size
e 4-way associative

e 64-byte line size

e write-through

Consider the functionsun() defined below, shown in C and in x86-64 assembly languageumesshat
the arraya begins at address 0x00000000001000000 and the laregins right aftea. Assume for each
part of the question that the cache is “cold” (empty).

#define X 128
double a[X], b[X];

doubl e vsun({doubl e *v1, double *v2, int n)

{
double s = 0.0;
int i;
for (i =0; i < n; ++i)
s += vi[i] + v2[i];
return (s);
}

.globl vsum
vsum # % di=vl, % si=v2, %edx=n

testl %edx, %edx
xor pd 9, Y&mil
jle . L4
xor pd 9%%nmmil, Y%&mil
xor | %ecx, %ecx
xor | Y%eax, %eax
. L5:
nmovsd (% di, % ax, 8), %m0
addl $1, %ecx

addsd (% si, % ax,8), %D
addq $1, % ax

cnpl %edx, %ecx
addsd %m0, Y&xmil
j ne . L5

. L4:
nmovapd %mml, %m0
ret

Page 12 of 19

1. How many sets does the L1 cache contain?

No of sets:

2. What is the miss rate in the L1 cachevgun() isinvoked asysun(a, b, X)?

M ss rate:

3. What is the miss rate in the L1 cachevgun() isinvoked aysun(a, a, X)?

M ss rate:

Page 13 of 19

Problem 7. (6 points):

Consider the following code:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

int main() {
char c;
int filel = open("buffer.txt", O RDONLY)
int file2;

read(filel, &c, 1);
file2 = dup(filel);
read(filel, &c, 1);
read(file2, &c, 1);
printf("1 = %\n", c);

int pid = fork();
if (pid==20) {
close(filel);
filel = open("buffer.txt”, O RDONLY)

read(filel, &c, 1);
printf("2 = %\n", c);
read(file2, &, 1);
printf("3 = %\n", c);

exit(0);
} else {
wai t pi d(pid, NULL, 0);

printf("4 = %\n", c);

close(file2);
dup2(filel, file2);

read(filel, &c, 1);

printf("5 = %\n", c);

read(file2, &, 1);

printf("6 = %\n", c);
}

return O;

}

Page 14 of 19

Assume that the disk filbuf f er . t xt contains the string of bytesour ce. Also assume that all system
calls succeed. What will be output when this code is comgiled run? You may not need all the lines in
the table given below.

Output Line Number Output

1! line of output

2"? [ine of output

3" line of output

4" line of output

5 line of output

6" line of output

7" line of output

8" line of output

9" line of output

Page 15 of 19

Problem 8. (8 points):

This problem tests your understanding of pointer arithmeiointer dereferencing, and malloc implemen-
tation.

Harry Q. Bovik has decided to exercise his creativity and ¢tr@ated the most exotic dynamic memory
allocator that the 213 staff has ever seen. The followingdestription of Harry’s block structure:

| KEY | PAYLOAD | FTR |

e KEY - Key of the block (4 bytes).
e PAYLOAD - Payload of the block (arbitrary size).
e FTR - Footer of the block (4 bytes).

Harry has decided to store a key in the beginning of each bimtkad of a header; Harry has a secret way
of computing the size of the blockfsayload from the key. The size of the KEY field is 4 bytes.

Harry has also decided to store the size of a block’s paylnatié footer of the block. Since there is an
8-byte alignment requirement, the least significant of tha@sed bits is used to indicate whether the block
is free (0) or allocated (1).

Note that Harry is working on a 32-bit machine. You can assthmadollowing:

e sizeof (int) == 4 bytes,

e sizeof (char) == 1 byte,

e sizeof (short) == 2 bytes,
e sizeof (I ong) == 4 bytes,

and the size of any pointer (e.ghar =) is 4 bytes.

Page 16 of 19

Your task is to help Harry get the correct key (using the fiorcget _key()), by indicating which of the
following implementations of th€ET_KEY macro are correct. For each of the proposed solutions listed
below, fill in the blank with eithelYes for correct orNo for incorrect.

/+* get_key returns the key of a bl ock.

bp is pointing to the first byte of

a block returned fromHarry' s malloc().
* |

#def i ne GET_KEY(p) ??

int get_key(void *bp) {
return (int)(CGET_KEY(bp));
}

[+ A */
#defi ne GET_KEY(p) (*(char *)((int *)(p) - 1))

[+ B. */
#define GET_KEY(p) (*(int *)((short =*x)(p) - 2))

[+ C. =/
#define GET_KEY(p) (*(long *)((char *)(p) - 4))

[+ D. =/
#define GET_KEY(p) (*(long *)((long **)(p) - 1))

[~ E. =/
#define GET_KEY(p) (*(int *)((long)(p) - 4))

[+ F. =/
#define GET_KEY(p) (*(int *)((char)(p) - 4))

[+ G =*/
#define GET_KEY(p) (*(int *)((int *x)(p) - 1))

[+ H =/
#define GET_KEY(p) (*(short =*)((short *)(p) - 2))

Page 17 of 19

Consider the code written by Harry Q. Bovik for the followipgoblem.

x| _count;

pt hread_mutex_t xcount |,
id?2, tid3, tid_ 4;

int ref _count, tid 1, t

void *threadl(void *vargp) {
tid 2 = pthread_sel f();
pt hread_mnut ex_| ock(count |);
ref count ++;
pt hr ead_mut ex_unl ock(count _1);
return(0);
}
void *t hread2(void *vargp) {
tid 1 = pthread_self();
pt hread_mut ex_| ock(count _|);
pt hread_kill (pthread_self(), SIGKILL);
ref _count ++;
pt hr ead_mnut ex_unl ock(count _I');
return(0);
}
void *t hread3(void *vargp) {
tid_3 = pthread_sel f();
pt hread_mnut ex_| ock(count _|);
pt hread_mut ex_| ock(!l _count);
ref count ++;
pt hr ead_mut ex_unl ock(l _count);
pt hr ead_mut ex_unl ock(count _1);
return(0);
}
void *t hread4(void *vargp) {
tid_4 = pthread_sel f();
pt hread_mut ex_| ock(! _count);
pt hread_mut ex_| ock(count _|);
ref count--;
pt hread_mut ex_unl ock(l _count);
pt hr ead_mut ex_unl ock(count _I);
return(0);
}
voi d funcl(void) {
pthread t t1,t2
pthread _create(& 1, NULL, threadl, NULL);
pt hread_create(& 2, NULL, thread2, NULL);
pt hread_j oi n(t2, NULL);
pt hread_join(t1, NULL);
exit(0);
}
void func2(void) {
pthread_t t3, t4;
pt hread_create(& 4, NULL, thread4, NULL);
pt hread_create(& 3, NULL, thread3, NULL);
pthread_join(t3, NULL);
pt hread_join(t4, NULL);
exit(0); Page 18 of 19

Problem 9. (6 points):
Please assume that all necessary header files are includied dode and all system calls and accessory
functions always succeed. You may assume that the lockstiereinitialized correctly imai n() , which

we do not show.

1. Bovik comes to you and complains thatnc1() seems to misbehave. Is he lying or is there some-
thing wrong with his code? Defend your answer in 1-3 sentence

2. Bovik is complaining aboutunc?2() as well. He insists to your boss that this program sometimes
hangs and your boss would like your opinion. Is Bovik lyingaegor is there a problem? Defend

your answer in 1-3 sentences.

Page 19 of 19

