
Andrew login ID:

Full Name:

CS 15-213, Fall 2001

Final Exam
December 13, 2001

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 120 points.

� This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (20):

2 (10):

3 (10):

4 (8):

5 (12):

6 (6):

7 (14):

8 (10):

9 (16):

10 (14):

TOTAL (120):

Page 1 of 18

Problem 1. (20 points):
We are running programs on a machine with the following characteristics:

� Values of type int are 32 bits. They are represented in two’s complement, and they are right shifted
arithmetically. Values of type unsigned are 32 bits.

� Values of type float are represented using the 32-bit IEEE floating point format, while values of
type double use the 64-bit IEEE floating point format.

We generate arbitrary values x, y, and z, and convert them to other forms as follows:

/* Create some arbitrary values */
int x = random();
int y = random();
int z = random();
/* Convert to other forms */
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
double dx = (double) x;
double dy = (double) y;
double dz = (double) z;

For each of the following C expressions, you are to indicate whether or not the expression always yields 1.
If so, circle “Y”. If not, circle “N”. You will be graded on each problem as follows:

� If you circle no value, you get 0 points.

� If you circle the right value, you get 2 points.

� If you circle the wrong value, you get �
�

points (so don’t just guess wildly).

Expression Always True?

(x<y) == (-x>-y) Y N

((x+y)<<4) + y-x == 17*y+15*x Y N

˜x+˜y+1 == ˜(x+y) Y N

ux-uy == -(y-x) Y N

(x >= 0) || (x < ux) Y N

((x >> 1) << 1) <= x Y N

(double)(float) x == (double) x Y N

dx + dy == (double) (y+x) Y N

dx + dy + dz == dz + dy + dx Y N

dx * dy * dz == dz * dy * dx Y N

Page 2 of 18

Problem 2. (10 points):
A C function looper and the assembly code it compiles to on an IA-32 machine running Linux/GAS is
shown below:

looper:
pushl %ebp
movl %esp,%ebp
pushl %esi
pushl %ebx
movl 8(%ebp),%ebx
movl 12(%ebp),%esi
xorl %edx,%edx
xorl %ecx,%ecx
cmpl %ebx,%edx
jge .L25

.L27:
movl (%esi,%ecx,4),%eax
cmpl %edx,%eax
jle .L28
movl %eax,%edx

.L28:
incl %edx
incl %ecx
cmpl %ebx,%ecx
jl .L27

.L25:
movl %edx,%eax
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

int looper(int n, int *a) {
int i;
int x = ______________;

for(i = ____________;

________________;

i++) {

if (___________________)

x = _________________;

____________________;
}

return x;
}

Based on the assembly code, fill in the blanks in the C source code.

Notes:

� You may only use the C variable names n, a, i and x, not register names.

� Use array notation in showing accesses or updates to elements of a.

Page 3 of 18

Problem 3. (10 points):
Consider the following incomplete definition of a C struct along with the incomplete code for a function
func given below.

typedef struct node {

_______________ x;

_______________ y;

struct node *next;

struct node *prev;

} node_t;

node_t n;

void func() {

node_t *m;

m = ______________________;

m->y /= 16;

return;
}

When this C code was compiled on an IA-32 machine running Linux, the following assembly code was
generated for function func.

func:
pushl %ebp
movl n+12,%eax
movl 16(%eax),%eax
movl %esp,%ebp
movl %ebp,%esp
shrw $4,8(%eax)
popl %ebp
ret

Given these code fragments, fill in the blanks in the C code given above. Note that there is a unique answer.

The types must be chosen from the following table, assuming the sizes and alignment given.
Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2

unsigned short 2 2
int 4 4

unsigned int 4 4
double 8 4

Page 4 of 18

Problem 4. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

void copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%eax
leal 0(,%eax,4),%ebx
leal 0(,%ecx,8),%edx
subl %ecx,%edx
addl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%ebx,%edx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 5 of 18

The following problem will test your understanding of the runtime stack. You are given the following
declarations on an x86 architecture:

struct file_spec {
int fs_tag, parent_dir, size;

};

struct l_node {
int tag;
struct l_node *next;

};

struct l_node get_list_head()
{
/* some irrelevant code */

}

void make_alias(..., ..., ..., ..., ...)
{
/* some more irrelevant code */

}

void save_file(struct file_spec *file, int len, char *descriptor)
{
int result = 0;
struct l_node root = get_list_head();

make_alias(..., ..., ..., ..., ...);

/* yet more irrelevant code */
}

On the next page, you have the diagram of the stack immediately before the call assembly instruction
for make alias() in save file() is executed. Argument descriptor given to save file() is
stored at 0xbffff5c0. You can make the following assumptions:

� The function make alias() takes exactly five arguments.

� The allocation order of local variables on the stack corresponds to their definition order in the source
code.

� The compiler does not insert any additional unused space on the stack apart from unused space re-
quired for alignment restrictions of variables.

� No registers (apart from %ebp) are being saved on the stack.

Page 6 of 18

Feel free to make comments or notes in the third column of the table - they will not be graded.

Address Numeric Value Comments/Description

0xbffff5c0 0xbffff7a0

0xbffff5bc 0x000feedb

0xbffff5b8 0xbffff780

0xbffff5b4 0x080459ec

0xbffff5b0 0xbffff630

0xbffff5ac 0x00000000

0xbffff5a8 0x83045c30

0xbffff5a4 0x00000045

0xbffff5a0 0xbffff5ac

0xbffff59c 0x83045c30

0xbffff598 0x00000045

0xbffff594 0xbffff780

0xbffff590 0x000feedb

0xbffff58c 0xbffff7a0

Page 7 of 18

Problem 5. (12 points):

A. Give the current value of the frame pointer (machine register %ebp).

B. The declaration of make alias() is missing the types of its parameters. Give the types in the order
they would appear in the source code. The names of the parameters do not matter.

C. List the arguments passed to make alias() in save file(), in the order they would appear in
the source code.

make alias(, , , ,);

Page 8 of 18

Problem 6. (6 points):
The following table gives the parameters for a number of different caches, where � is the number of physical
address bits,

�
is the cache size (number of data bytes), � is the block size in bytes, and � is the number

of lines per set. For each cache, determine the number of cache sets (�), tag bits (�), set index bits (�), and
block offset bits (�).

Cache � 	
 � � � �

1. 32 1024 4 4

2. 32 1024 4 256

3. 32 1024 8 1

4. 32 1024 8 128

5. 32 1024 32 1

6. 32 1024 32 4

Page 9 of 18

Problem 7. (14 points):
Consider a direct mapped cache of size 64K with block size of 16 bytes. Furthermore, the cache is write-
back and write-allocate. You will calculate the miss rate for the following code using this cache. Remember
that sizeof(int) == 4. Assume that the cache starts empty and that local variables and computations
take place completely within the registers and do not spill onto the stack.

A. Now consider the following code to copy one matrix to another. Assume that the src matrix starts at
address 0 and that the dest matrix follows immediately follows it.

void copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

3. What is the cache miss rate if ROWS = 128 and COLS = 256?
Miss rate = _________%

Page 10 of 18

B. Now consider the following two implementations of a horizontal flip and copy of the matrix. Again
assume that the src matrix starts at address 0 and that the dest matrix follows immediately follows it.

void copy_n_flip_matrix1(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

void copy_n_flip_matrix2(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (j=0; j<COLS; j++) {
for (i=0; i<ROWS; i++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 192 and COLS = 128?
Miss rate = _________%

Page 11 of 18

Problem 8. (10 points):

Consider the following function for computing the product of an array of � integers. We have unrolled the
loop by a factor of 3.

int aprod(int a[], int n)
{

int i, x, y, z;
int r = 1;
for (i = 0; i < n-2; i+= 3) {

x = a[i]; y = a[i+1]; z = a[i+2];
r = r * x * y * z; // Product computation

}
for (; i < n; i++)

r *= a[i];
return r;

}

For the line labeled Product computation, we can use parentheses to create 5 different associations
of the computation, as follows:

r = ((r * x) * y) * z; // A1
r = (r * (x * y)) * z; // A2
r = r * ((x * y) * z); // A3
r = r * (x * (y * z)); // A4
r = (r * x) * (y * z); // A5

We express the performance of the function in terms of the number of cycles per element (CPE). As de-
scribed in the book, this measure assumes the run time, measured in clock cycles, for an array of length � is
a function of the form

�
�
���

, where
�

is the CPE.

We measured the 5 versions of the function on an Intel Pentium III. Recall that the integer multiplication
operation on this machine has a latency of 4 cycles and an issue time of 1 cycle.

Page 12 of 18

(continued)

The following table shows some values of the CPE, and other values missing. The measured CPE values
are those that were actually observed. “Theoretical CPE” means that performance that would be achieved if
the only limiting factor were the latency and issue time of the integer multiplier.

Version Measured CPE Theoretical CPE

A1 4.00

A2 2.67

A3 ������� ��� ���
A4 1.67

A5 	
������� ��
�

Fill in the missing entries. For the missing values of the measured CPE, you can use the values from other
versions that would have the same computational behavior. For the values of the theoretical CPE, you can
determine the number of cycles that would be required for an iteration considering only the latency and
issue time of the multiplier, and then divide by 3.

Page 13 of 18

Problem 9. (16 points):
This problem tests your understanding of exceptional control flow in C programs. Assume we are running
code on a Unix machine. The following problems all concern the value of the variable counter.

Part I (6 points)

int counter = 0;

int main()
{

int i;

for (i = 0; i < 2; i ++){
fork();
counter ++;
printf("counter = %d\n", counter);

}

printf("counter = %d\n", counter);
return 0;

}

A. How many times would the value of counter be printed: ____________

B. What is the value of counter printed in the first line? ____________

C. What is the value of counter printed in the last line? ____________

Page 14 of 18

Part II (6 points)

pid_t pid;
int counter = 0;

void handler1(int sig)
{

counter ++;
printf("counter = %d\n", counter);
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);

}

void handler2(int sig)
{

counter += 3;
printf("counter = %d\n", counter);
exit(0);

}

main() {
signal(SIGUSR1, handler1);
if ((pid = fork()) == 0) {

signal(SIGUSR1, handler2);
kill(getppid(), SIGUSR1);
while(1) {};

}
else {

pid_t p; int status;
if ((p = wait(&status)) > 0) {

counter += 2;
printf("counter = %d\n", counter);

}
}

}

What is the output of this program?

Page 15 of 18

Part III (4 points)

int counter = 0;

void handler(int sig)
{

counter ++;
}

int main()
{

int i;

signal(SIGCHLD, handler);

for (i = 0; i < 5; i ++){
if (fork() == 0){

exit(0);
}

}

/* wait for all children to die */
while (wait(NULL) != -1);

printf("counter = %d\n", counter);
return 0;

}

A. Does the program output the same value of counter every time we run it? Yes No

B. If the answer to A is Yes, indicate the value of the counter variable. Otherwise, list all possible values
of the counter variable.

Answer: counter = __________________

Page 16 of 18

Problem 10. (14 points):
Consider an allocator with the following specification:

� Uses a single explicit free list.

� All memory blocks have a size that is a multiple of 8 bytes and is at least 16 bytes.

� All headers, footers, and pointers are 4 bytes in size

� Headers consist of a size in the upper 29 bits, a bit indicating if the block is allocated in the lowest
bit, and a bit indicating if the previous block is allocated in the second lowest bit.

� Allocated blocks consist of a header and a payload (no footer)

� Free blocks consist of a header, two pointers for the next and previous free blocks in the free list, and
a footer at the end of the block.

� All freed blocks are immediately coalesced.

� The heap starts with 0 bytes, never shrinks, and only grows large enough to satisfy memory requests.

� The heap contains only allocated blocks and free blocks. There are is no space used for other data or
special blocks to mark the beginning and end of the heap.

� When a block is split, the lower part of the block becomes the allocated part and the upper part
becomes the new free block.

� Any newly created free block (whether it come from a call to free, the upper part of a split block,
or the coalescing of several free blocks) is inserted at the beginning of the free list.

� All searches for free blocks start at the head of the list and walk through the list in order.

� If a request can be fulfilled by using a free block, that free block is used. Otherwise the heap is
extended only enough to fulfill the request. If there is a free block at the end of the heap, this can be
used along with the new heap space to fulfill the request.

Page 17 of 18

A. Simulating Malloc (10 points)

Below you are given a series of memory requests. You are asked to show what the heap looks like after each
request is completed using a first fit and a best fit placement policy. The heap is represented as a series of
boxes, where each box is a single block on the heap, and the bottom of the heap is the left most box. In each
block, you should write the total size (including headers and footers) of the block in bytes and either ’f’ or
’a’ to mark it as free or allocated, respectively. For example, the following heap contains an allocated block
of size 16, followed by a free block of size 32.

16 a 32 f

Assume that the heap is empty before each of the sequences is run. You do not necessarily have to use all
the boxes provided for the heap. Some of the boxes are already filled in to help you.

First Fit Best Fit
ptr1 = malloc(32);
ptr2 = malloc(16); 24a
ptr3 = malloc(16);
ptr4 = malloc(40);

free(ptr3); 24f
free(ptr1);

ptr5 = malloc(16);
free(ptr4); 24a
ptr6 = malloc(48); 24a
free(ptr2);

Page 18 of 18

B. Code for Malloc (4 points)

For this part, you are asked to complete some small functions which are used to setup blocks. Each function
will be missing a line of code and you are given three choices for this line of code. Circle the choice that
completes the function correctly.

Function 1

/* Input: void *block: a pointer to a block
* unsigned long size: the size of the block,
* char alloc: the lower order bit indicates if this block is
* allocated
* char palloc: the lower order bit indicates if the previous
* block is allocated
* Actions: This function will construct a header from the last 3
* parameters and place it in the header of the block pointed
* to by the first parameter.
*/

void make_header(void *block, unsigned long size, char alloc, char palloc)
{

long header;

________;

*(long *)block = header;
}

A. header = (size >> 3) | ((alloc & 0x1) << 31) | ((palloc & 0x1) << 30);
B. header = (size & ˜0x7) | (alloc & 0x1) | ((palloc & 0x1) << 1);
C. header = size | alloc | palloc;

Page 19 of 18

Function 2

/* Input: void *block: a pointer to a block
* char palloc: the low order bit indicates if the previous
* block is allocated
* Actions: Sets just the bit in the header indicating if the previous
* block is allocated. Does nothing to the rest of the header.
*/

void set_palloc_in_header(void *block, char palloc)
{

long curr = *(long *)block;

__________;
}

A. *(long *)block = (curr & ˜0x2) | ((palloc & 0x1) << 1);
B. *(long *)block = (curr & ˜(0x1 << 30)) | ((palloc & 0x1) << 30);
C. *(long *)block = (curr | (0x1 << 30)) & ˜((palloc & 0x1) << 30);

Page 20 of 18

