
15-213 Introduction to Computer Systems

Exam 1

February 27, 2007

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam. Notes are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

Integers

Floating Point

Assembly Language

Calling Conventions

Structures and Alignment

Out-of-Order Execution

Problem Max Score

1 10

2 15

3 15

4 10

5 10

6 15

Total 75

1



1. Integers (10 points)

For each of the following propositions, write in all comparisons that make it true among
the four possibilities:

< > == !=

If none are guaranteed to hold, please indicate that explicitly by marking it with an X. We
have filled in the first two for you as examples. Assume the variables are declared with

int x,y;

and initialized to some unknown values. You may assume that int’s are 32 bits wide,
char’s are 8 bits wide and that right shift is arithmetical on signed numbers and logical
on unsigned numbers.

If x > y then y



















<

!=



















x

If x < 0 then x+1

{

X

}

0

If x > 0 then x+1

{

!=

}

0

If (x >> 31) < 0 then x



















<

!=



















0

If ((x << 31) >> 31) < 0 then x & 1



















>

!=



















0

If x > y then (unsigned)x

{

!=

}

y

If ((unsigned char)x >> 1) < 64 then (char)x

{

X

}

0

2



2. Floating Point (15 points)

1. (10 pts) Fill in the blank entries in the following table. We assume an IEEE repre-
sentation of floating point numbers with 1 sign bit, k = 3 bits for the exponent and
n = 4 bits for the fractional value. This means the bias is 23−1 − 1 = 3.

Value Form M × 2E Hexadecimal Decimal

for 1 ≤ M < 2 representation fraction

Smallest denorm. 1.0 × 2−6 0x01 1

64

Smallest norm. 1.0 × 2−2 0x10 1

4

One 1.0 × 20 0x30 1

Largest norm. 1.1111 × 23 0x6F 31

2

Infinity XXXXX 0x70 XXXXX

2. (5 pts) With standard single precision floating point numbers with 1 sign bit, k =

8 bits for the exponent, and n = 23 bits for the significand, what is the smallest
positive value for n declared with int n; such that

(int)(float)n != n ? 224 + 1

3



3. Assembly Language (15 points)

Consider the following recursive C program that sorts a segment of an integer array into
ascending order in place.

/* qsort(A, low, high) sorts subarray A[low]..A[high] */
void qsort (int* A, int low, int high) {
int pivot, i, k;
if (low >= high) return;
pivot = A[high];
i = low;
k = high;
while (i < k) {
if (A[i] < pivot) {
i++;

} else {
A[k] = A[i];
k--;
A[i] = A[k];

}
}
A[k] = pivot;
qsort(A, low, k-1);
qsort(A, k+1, high);

}

The while loop is compiled to the following assembly language instructions.

.L13:
incl %edx
jmp .L8

.L7:
movslq %edx, %rcx
movl (%rbp,%rcx,4), %eax
cmpl %r8d, %eax
jl .L13
movl %eax, (%rbp,%rdi,4)
decl %ebx

___________________________ <first missing instruction>

___________________________ <second missing instruction>
movl %eax, (%rbp,%rcx,4)

.L8:
cmpl %ebx, %edx
jl .L7

4



1. (5 pts) Complete the following table associating C variable or expressions with reg-
isters.

C Expression Register

pivot %r8d
A %rbp
i %edx
k %ebx

(long)k %rdi
(long)i %rcx

2. (5 pts) The register %eax holds temporary values during the loop computation. List
all the source expressions whose values it holds.

A[i], A[k]

3. (5 pts) Fill in the two missing instructions.

movslq %ebx, %rdi and movl (%rbp,%rdi,4), %eax

5



4. Calling Conventions (10 points)

After the code of the while loop shown before, we find the following instructions to
implement the first recursive call.

movl %r8d, (%rbp,%rdi,4)
leal -1(%rbx), %edx
movq %rbp, %rdi
call qsort

1. (5 pts) By the x86-64 calling conventions, which of the mentioned registers are guar-
anteed to have the same value when qsort returns as right before the call? Write
yes or no into the space.

Register Same?

%r8d no

%rbp yes

%rdi no
%rbx yes

%edx no

We are surprised that following the first recursive call, we find no further recursive
call, but instead the instructions

leal 1(%rbx), %esi
jmp .L14

where .L14 is a label near the beginning of the qsort procedure. The compiler used an
optimization to eliminate the second recursive call in favor of a jump instruction.

2. (5 pts) Complete the following rendering of the compiler’s optimization in C in the
form of a new while loop.

void qsort (int* A, int low, int high) {
int pivot, i, k;
/* eliminated here: if (low >= high) return; */
while (___________) {

pivot = A[high];
i = low;
k = high;
while (i < k) { ... as before ... }
A[k] = pivot;
qsort(A, low, k-1);

___________________ /* was: qsort(A, k+1, high); */
}

}

6



low < high and low = k+1

7



5. Structures and Alignment (10 points)

This question concerns alignment on an x86-64 architecture and pointer arithmetic. Con-
sider the following C structure declaration.

struct box {
int tag; /* 0 = int, 1 = long, 2 = float, 3 = double */
union {
int i;
long l;
float f;
double d;

} data;
};

1. (3 pts) What is the total size of a box structure on an x86-64, expressed in bytes?

16

2. (2 pts) An element of type struct box must be aligned at 0 modulo 8.

3. (5 pts) Write a C function int high4 (long x); that extracts the high 4 bytes
of a long as an int. For example, high (0x1234567890abcdef) should return
0x12345678. Use a box structure and pointer arithmetic. Your code may ignore
the tag field.

int high4 (long x) {
struct box b;
b.data.l = x;
return *(&b.data.i+1);

}

8



6. Out-of-Order Execution (15 points)

We now return to the earlier quicksort procedure. If the array is already sorted, the first
conditional branch instruction in the code fragment below will always be taken.

1. (5 pts) Assume that the processor correctly predicts this, as well as the second
branching instruction (for example, because they both go backwards). On the right-
hand side, show the translation of the assembly language instructions into execution
unit operations with register renaming. Do not rename registers that are invariant
throughout multiple loop iterations. We have already filled in the translations of
the conditional branches; the unconditional jump is handled by the instruction fetch
unit. Consider .L7 as your loop entry point.

.L13: |
incl %edx | incl %edx.0 -> %edx.1
jmp .L8 | (handled in fetch unit)

.L7: |
movslq %edx, %rcx | movslq %edx.0 -> %rcx.1
movl (%rbp,%rcx,4), %eax | load (%rbp,%rcx.1,4) -> %eax.1
cmpl %r8d, %eax | cmpl %r8d, %eax.1 -> cc.1a
jl .L13 | jl-taken cc.1a
<omitted code> |

.L8: |
cmpl %ebx, %edx | cmpl %ebx, %edx.1 -> cc.1b
jl .L7 | jl-taken cc.1b

9



2. (7 pts) Complete the labeling in the following timed data dependency diagram. We
have already filled in the registers that are not renamed and one register move op-
eration.

Cycle

1

2

3

4

5

6

7

8

9

10

11

Iteration 1

 %r8d 

%edx.1

%edx.0

 %rbp 
 %ebx 

movslq incl

cmpl

jl-taken

cmpl

jl-taken

 %rcx.1 

 %eax.1 

 cc.1a

 cc.1b 
load

3. (3 pts) What is the theoretical CPE for this loop, assuming perfect branch prediction
and no resource limitions?

1.0 CPE

10


