
Andrew ID (print clearly!):
Full Name:

15-213/18-213, Fall 2012

Midterm Exam
Tuesday, October 16, 2012

Instructions:

• Make sure that your exam is not missing any sheets, then write your Andrew ID and full name on the
front.

• This exam is closed book, closed notes (except for 1 double-sided note sheet). You may not use any
electronic devices.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 71 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

1 (10):

2 (07):

3 (06):

4 (08):

5 (08):

6 (04):

7 (08):

8 (10):

9 (10):

TOTAL (71):

Page 1 of 15

Problem 1. (10 points):
Multiple choice. Write your answer for each question in the following table:

1 2 3 4 5 6 7 8 9 10

1. What is the output of the following code?
Assume that int is 32 bits, short is 16 bits, and the representation is two’s complement.

unsigned int x = 0xDEADBEEF;
unsigned short y = 0xFFFF;
signed int z = -1;
if (x > (signed short) y)

printf("Hello");
if (x > z)

printf("World");

(a) Prints nothing.

(b) Prints ”Hello”

(c) Prints ”World”

(d) Prints ”HelloWorld”

2. 1) mov (%eax, %eax, 4), %eax
2) lea (%eax, %eax, 4), %eax

Which of the above accomplishes the following: %eax = 5 * %eax?

(a) Neither 1 nor 2.

(b) Only 1.

(c) Only 2.

(d) Both 1 and 2.

3. The x86-64 instruction test is best described as which of the following:

(a) Same as sub.

(b) Same as sub, but doesn’t keep the result (only sets flags).

(c) Same as and.

(d) Same as and, but doesn’t keep the result (only sets flags).

Page 2 of 15

4. In the following code, what order of loops exhibits the best locality?

// int a[X][Y][Z] is declared earlier
int i, j, k, sum = 0;
for (i = 0; i < Y; i++)

for (j = 0; j < Z; j++)
for (k = 0; k < X; k++)

sum += a[k][i][j];

(a) i on the outside, j in the middle, k on the inside (as is).

(b) j on the outside, k in the middle, i on the inside.

(c) k on the outside, i in the middle, j on the inside.

(d) The order does not matter.

5. Which expression will evaluate to 0x1 if x is a multiple of 32 and 0x0 otherwise? Assume that x is
an unsigned int.

(a) !(x & 0x1f)

(b) !(x & 0x3f)

(c) (x & 0x1f)

(d) (x | 0x3f)

(e) !(x ˆ 0x1f)

6. On a 32-bit Linux system, what is the size of a long?

(a) 2 bytes

(b) 4 bytes

(c) 6 bytes

(d) 8 bytes

(e) 16 bytes

7. Consider the C declaration

int array[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

Suppose that the compiler has placed the variable array in the %ecx register. How do you move
the value at array[3] into the %eax register? Assume that %ebx is 3.

(a) leal 12(%ecx),%eax

(b) leal (%ecx,%ebx,4),%eax

(c) movl (%ecx,%ebx,4),%eax

(d) movl 8(%ecx,%ebx,2),%eax

(e) leal 4(%ecx,%ebx,1),%eax

Page 3 of 15

8. Why does the technique called “blocking” help with cache utilization when transposing a matrix?

(a) Inductive locality

(b) Spatial locality

(c) Monadic locality

(d) Temporal locality

(e) Internet locality

9. What is NOT true about 64-bit Linux systems?

(a) %rax is used for function return values

(b) There are more registers than there are in 32-bit systems

(c) All function arguments are passed on the stack

(d) %rbp can be used like any other register; there is no base pointer

(e) %eax and %ebx can be used like in a 32-bit system.

10. On a 64-bit system, if %rsp has the value 0x7ffff0000 immediately before a retq instruction,
what is the value of %rsp immediately after the retq?

(a) 0x7ffffefff8

(b) 0x7fffff0000

(c) 0x7fffff0004

(d) 0x7fffff0008

(e) The return address

Page 4 of 15

Problem 2. (7 points):
Integer encoding. Assume we are running code on two machines using two’s complement arithmetic for
signed integers. Machine 1 has 4-bit integers and Machine 2 has 6-bit integers. Fill in the empty boxes in
the table below. The following definitions are used in the table:

int x = -5;
unsigned ux = x;

Expression 4-bit decimal 4-bit binary 6-bit decimal 6-bit binary

-8 −8 −8

−TMin

x >> 1

(−xˆ(−1)) >> 2

Page 5 of 15

Problem 3. (6 points):
Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE
floating point format. We consider two different 6-bit formats:

Format A:

• There is one sign bit s.

• There are k = 3 exponent bits. The bias is 2k−1 − 1 = 3.

• There are n = 2 fraction bits.

Format B:

• There is one sign bit s.

• There are k = 2 exponent bits. The bias is 2k−1 − 1 = 1.

• There are n = 3 fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even).
Recall that for denormalized numbers, E = 1− bias. For normalized numbers, E = e− bias.

Value Format A Bits Format B Bits

Zero 0 000 00 0 00 000

One

1/2

11/8

Page 6 of 15

Problem 4. (8 points):
Loops. Consider the following x86 assembly code:

(gdb) disassemble transform
0x080483d0 <+0>: push %ebp
0x080483d1 <+1>: mov %esp,%ebp
0x080483d3 <+3>: mov 0x8(%ebp),%edx
0x080483d6 <+6>: mov $0x0,%eax
0x080483db <+11>: test %edx,%edx
0x080483dd <+13>: je 0x80483ec <transform+28>
0x080483df <+15>: test $0x1,%dl
0x080483e2 <+18>: je 0x80483e8 <transform+24>
0x080483e4 <+20>: lea 0x1(%eax,%eax,1),%eax
0x080483e8 <+24>: shr %edx
0x080483ea <+26>: jne 0x80483df <transform+15>
0x080483ec <+28>: pop %ebp
0x080483ed <+29>: ret

Given this assembly code, reconstruct the C transform function.

• Recall that %dl is the low-order byte of %edx.

• Recall that if a shift amount is not specified in the shr instruction, a default shift amount of 1 is used.
Hence, the shr %edx instruction updates the %edx register by shifting its value to the right by one
bit position.

unsigned transform(unsigned n)
{

int b, m;

for (m = ______; _______________; ________________) {

b =__________________;

if (b == 0) {

___________________________;
}

___________________________;
}

return m;
}

Page 7 of 15

Problem 5. (8 points):
Struct alignment. Consider the following C struct declaration:

typedef struct {
char a;
long b;
float c;
char d[3];
int *e;
short *f;

} foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

2. Rearrange the elements of foo to conserve the most space in memory. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Page 8 of 15

Problem 6. (4 points):
Struct Access. Now for something totally different... Dr. Grave O’Danger is now head of the computer
science department and has decided to make it impossible for you to graduate.

struct confuse {
char systems;
long theory;
struct applications {
char web[3];

} database;
int *languages;
struct confuse *math;

};

Below are three C functions and three x86-64 Linux code blocks.

char *bachelors(struct confuse *ptr) {
return &(ptr->database.web[2]);

}

int masters(struct confuse *ptr) {
return *(ptr->languages);

}

long phd(struct confuse *ptr) {
return ptr->math->theory;

}

A mov 0x20(%rdi), %rax
mov 0x8(%rax), %rax
retq

B lea 0x12(%rdi),%rax
retq

C mov 0x18(%rdi), %rax
mov (%rax), %eax
retq

In the following table, next to the name of each x86-64 code block, write the name of the C function that it
implements.

Code Block Function Name

A

B

C

Page 9 of 15

Problem 7. (8 points):
Switch statements. The following problem tests your understanding of switch statements that use jump
tables.

Consider a switch statement with the following implementation. The code uses this jmpq instruction to
index into the jump table:

0x40047b jmpq *0x400598(,%rdi,8)

Using GDB we extract the jump table:

0x400598: 0x0000000000400488 0x0000000000400488
0x4005a8: 0x000000000040048b 0x0000000000400493
0x4005b8: 0x000000000040049a 0x0000000000400482
0x4005c8: 0x000000000040049a 0x0000000000400498

Here is the assembly code for the switch statement:

#on entry : %rdx = c and %rsi = b
0x400474 : cmp $0x7,%edi
0x400477 : ja 0x40049a
0x400479 : mov %edi,%edi
0x40047b : jmpq *0x400598(,%rdi,8)
0x400482 : mov $0x15213,%eax
0x400487 : retq
0x400488 : sub $0x5,%edx
0x40048b : lea 0x0(,%rdx,4),%eax
0x400492 : retq
0x400493 : mov $0x2,%edx
0x400498 : and %edx,%esi
0x40049a : lea 0x4(%rsi),%eax
0x40049d : retq

Page 10 of 15

Fill in the C code implementing this switch statement:

int main(int a, int b, int c){
int result = 4;

switch(a){
case 0:

case 1:

__________;

case __:

__________;

break;

case __:

result = __________;

break;

case 3:

__________;

case 7:

__________;

default:

__________;

}

return result;
}

Page 11 of 15

Problem 8. (10 points):
Stack discipline. Consider the following C code and its corresponding 32-bit x86 machine code. Please
complete the stack diagram on the following page.

int bar (int a, int b) {
return a + b;

}

int foo(int n, int m, int c) {
c += bar(m, n);
return c;

}

08048374 <bar>:
8048374: 55 push %ebp
8048375: 89 e5 mov %esp,%ebp
8048377: 8b 45 0c mov 0xc(%ebp),%eax
804837a: 03 45 08 add 0x8(%ebp),%eax
804837d: 5d pop %ebp
804837e: c3 ret

0804837f <foo>:
804837f: 55 push %ebp
8048380: 89 e5 mov %esp,%ebp
8048382: 83 ec 08 sub $0x8,%esp
8048385: 8b 45 08 mov 0x8(%ebp),%eax
8048388: 89 44 24 04 mov %eax,0x4(%esp)
804838c: 8b 45 0c mov 0xc(%ebp),%eax
804838f: 89 04 24 mov %eax,(%esp)
8048392: e8 dd ff ff ff call 8048374 <bar>
8048397: 03 45 10 add 0x10(%ebp),%eax
804839a: c9 leave
804839b: c3 ret

Page 12 of 15

A. Draw a detailed picture of the stack, starting with the caller invoking foo(3, 4, 5), and ending
immediately before execution of the ret instruction in bar.

• The stack diagram should begin with the three arguments for foo that the caller has placed on the
stack. To help you get started, we have given you the first one.

• Use the actual values for function arguments, rather than variable names. For example, use 3 or 4
instead of n or m.

• Always label %ebp and give its value when it is pushed to the stack, e.g., %ebp: 0xffff1400.

• You may not need to fill in all of the boxes in the diagram.

Value of %ebp when foo is called: 0xffffd858
Return address in function that called foo: 0x080483c9

Stack The diagram starts with the
addresss arguments for foo()

+-----------------------------------+
0xffffd850 | 5 |

+-----------------------------------+
0xffffd84c | |

+-----------------------------------+
0xffffd848 | |

+-----------------------------------+
0xffffd844 | |

+-----------------------------------+
0xffffd840 | |

+-----------------------------------+
0xffffd83c | |

+-----------------------------------+
0xffffd838 | |

+-----------------------------------+
0xffffd834 | |

+-----------------------------------+
0xffffd830 | |

+-----------------------------------+

B. What is the final value of %ebp, immediately before execution of the ret instruction in bar?

%ebp=0x_____________________

C. What is the final value of %esp, immediately before execution of the ret instruction in bar?

%esp=0x____________________

Page 13 of 15

Problem 9. (10 points):
Caches. Consider a computer with an 8-bit address space and a direct-mapped 64-byte data cache with
8-byte cache blocks.

A. The boxes below represent the bit-format of an address. In each box, indicate which field that bit
represents (it is possible that a field does not exist) by labeling them as follows:

B: Block Offset

S: Set Index

T: Cache Tag

7 6 5 4 3 2 1 0

B. The table below shows a trace of load addresses accessed in the data cache. Assume the cache is
initially empty. For each row in the table, please complete the two rightmost columns, indicating (i)
the set number (in decimal notation) for that particular load, and (ii) whether that loads hits (H) or
misses (M) in the cache (circle either “H” or “M” accordingly).

Load Hex Binary Set Number? Hit or Miss?

No. Address Address (in Decimal) (Circle one)

1 43 0100 0011 H M

2 b2 1011 0010 H M

3 40 0100 0000 H M

4 f9 1111 1001 H M

5 b2 1011 0010 H M

6 93 1001 0011 H M

7 d0 1101 0000 H M

8 b0 1011 0000 H M

9 67 0110 0111 H M

10 07 0000 0111 H M

Page 14 of 15

C. For the trace of load addresses shown in Part B, below is a list of possible final states for the cache,
showing the hex value of the tag for each cache block in each set. Assume that initially all cache
blocks are invalid (represented by X).

(a) Set: 0 1 2 3 4 5 6 7
Tag: 0 X 2 1 X X 2 3

(b) Set: 0 1 2 3 4 5 6 7
Tag: 0 3 3 X 1 X 2 X

(c) Set: 0 1 2 3 4 5 6 7
Tag: 0 X 3 X 1 X 2 3

(d) Set: 0 1 2 3 4 5 6 7
Tag: X 0 X X 1 X 1 3

(e) Set: 0 1 2 3 4 5 6 7
Tag: 0 X 0 X 1 X X 3

(f) Set: 0 1 2 3 4 5 6 7
Tag: 0 4 X 2 1 X X 4

(g) Set: 0 1 2 3 4 5 6 7
Tag: 1 X 2 X 1 X 2 3

Which of the choices above is the correct final state of the cache? _____

Page 15 of 15

