
1

Carnegie Mellon

The course that gives CMU its “Zip”!

Course Overview

15-213 /15-513/18-213: Introduction to Computer Systems
1st Lecture, May 20th, 2013

Instructors:

Greg Kesden

2

Carnegie Mellon

Overview

 Course theme

 Five realities

 Logistics

3

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes from taking 213
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

4

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 1600000000

 50000 * 50000 ??

Source: xkcd.com/571

5

 Example: Is x2 ≥ 0?

 Floats: Yes!

 Ints: Maybe?

 40000 * 40000 1600000000

 50000 * 50000 ?

 Example: Is ((x * y) / z) equal to (x * (y/z))

 No infinite precision within finite memory

 Floating point means variable finite precision

 Random numbers:

 Pseudo-random, seeded somehow

 Finite representations have different mathematical properties

 Cannot assume all “usual” mathematical properties

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

6

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

7

Carnegie Mellon

Great Reality #3: Memory Matters

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major speed
improvements

8

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

 volatile double d[1] = {3.14};

 volatile long int a[2];

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

Location accessed by

fun(i)

Explanation:
Saved State 3

d[0] 2

a[1] 1

a[0] 0

fun(0) 3.14

fun(1) 3.14

fun(2) 5.30499e-315

fun(3) 3.14

fun(4) segmentation fault

9

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

10

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

Same instructions, but different order → 21x slower!
(Pentium 4)

11

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

12

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement large portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

13

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

 Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Cover material in this course that you won’t see elsewhere

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone!

14

Carnegie Mellon

Programs and Data

 Topics

 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 Assignments

 L1 (datalab): Manipulating bits

 L2 (bomblab): Defusing a binary bomb

 L3 (buflab): Hacking a buffer bomb

15

Carnegie Mellon

The Memory Hierarchy

 Topics

 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

 Assignments

 L4 (cachelab): Building a cache simulator and optimizing for locality.

 Learn how to exploit locality in your programs.

16

Carnegie Mellon

Exceptional Control Flow

 Topics

 Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

 Includes aspects of compilers, OS, and architecture

 Assignments

 L5 (tshlab): Writing your own Unix shell.

 A first introduction to concurrency

17

Carnegie Mellon

 Virtual Memory

 Topics

 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Assignments

 L6 (malloclab): Writing your own malloc package

 Get a real feel for systems-level programming

18

Carnegie Mellon

 Networking, and Concurrency

 Topics

 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

 Assignments

 L7 (proxylab): Writing your own Web proxy

 Learn network programming and more about concurrency and
synchronization.

19

Carnegie Mellon

Course Components

 Lectures

 Higher level concepts

 Recitations
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (7)
 The heart of the course

 1-2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Exams (midterm + final)

 Test your understanding of concepts & mathematical principles

20

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

 Set a reasonable threshold for full credit

 Post intermediate results (anonymized) on Web page for glory!

21

Carnegie Mellon

 autolab.cs.cmu.edu

 Labs are provided by the CMU Autolab system

 Developed by CMU faculty and students

 Key ideas: Autograding and Scoreboards

 Autograding: Using VMs on-demand to evaluate untrusted code.

 Scoreboards: Real-time, rank-ordered, and anonymous summary.

 Used by 1,400 students each semester, since Fall, 2010

 With Autolab you can use your Web browser to:

 Download the lab materials

 Handin your code for autograding by the Autolab server

 View the class scoreboard

 View the complete history of your code handins, autograded result,
instructor’s evaluations, and gradebook.

 Students enrolled on Monday, Jan 14 have accounts

 If you need to be added, contact 15-213-staff@cs.cmu.edu

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu

22

Carnegie Mellon

Getting Help

 Class Web page: http://www.cs.cmu.edu/~213

 Complete schedule of lectures, exams, and assignments

 Copies of lectures, assignments, exams, solutions

 Clarifications to assignments

 Blackboard

 We won’t be using Blackboard for the course

23

Carnegie Mellon

Getting Help
 Staff mailing list: 15-213-staff@cs.cmu.edu

 Use this for all communication with the teaching staff

 Always CC staff mailing list during email exchanges

 Send email to individual instructors only to schedule appointments

 Office hours
 TBA

 1:1 Appointments

 You can schedule 1:1 appointments with any of the teaching staff

 Just ask!

 Or drop by for office hours

24

Carnegie Mellon

Lab Facilities

 Labs can be done on any public campus Linux
system or the “Intel Shark Cluster”:
 linux> ssh shark.ics.cs.cmu.edu

 linux> ssh unix.andrew.cmu.edu

 linux> ssh ghcXX.ghc.cmu.edu, XX=01-81

 Getting help with the cluster machines:
 Please direct questions to staff mailing list or

ugradlabs@cs.cmu.edu

25

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

 “Computer Systems: A Programmer’s Perspective, Second Edition”
(CS:APP2e), Prentice Hall, 2011

 http://csapp.cs.cmu.edu

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,

 “The C Programming Language, Second Edition”, Prentice Hall, 1988

26

Carnegie Mellon

Timeliness

 Grace days

 5 grace days for the course (none for L7)

 Limit of 2 grace days per lab used automatically

 Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Save them until late in the term!

 Lateness penalties
 Once grace day(s) used up, get penalized 15% per day

 No handins later than 3 days after due date

 Catastrophic events

 Major illness, death in family, …

 Formulate a plan (with your academic advisor) to get back on track

 Advice

 Once you start running late, it’s really hard to catch up

27

Carnegie Mellon

Cheating
 What is cheating?

 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line-by-line

 Copying code from previous course or from elsewhere on WWW

 Only allowed to use code we supply, or from CS:APP website

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Penalty for cheating:

 Removal from course with failing grade

 Permanent mark on your record

 Detection of cheating:

 We do check

 Our tools for doing this are much better than most cheaters think!

28

Carnegie Mellon

A Few Rules – No Exceptions

 Laptops: permitted

 Electronic communications: forbidden

 No email, instant messaging, cell phone calls, web, etc

 Presence in lectures, recitations: voluntary, recommended

 No high-fidelity recordings of ANY KIND (audio or video,
handwritten or hand-typed notes are okay)

 No downloading, recording, or redistribution of materials
distributed via Panopto -- access them only via Panopto.

29

Carnegie Mellon

Policies: Grading

 Local students:

 Exams (50%): midterm (20%), final (30%)

 Labs (50%): weighted according to effort

 Distance students

 Exams (50%): midterm (15%), final (35%)

 Labs (50%): weighted according to effort

30

Distance Logistics

 Exam Dates and Proctoring

 Midterm is self proctored, 1.5 hours, during same week as local students

 Final Exam is during first week of classes, likely Thursday evening

 Exam weight is different than for local students: midterm (15%), final (35%)

 Resource availability

 All materials, including video, will be linked on course Web site.

 Materials will often be available “same day”

 Hiccups are inevitable.

 If you want a smooth experience, just make a habit of delaying by two days. Most
any problem gets resolved within two days.

 Deadlines

 Automatic “free” extension of two days to allow for hiccups in distributing video
and other support materials.

31

Distance Support
 15-213-staff@cs.cmu.edu mailing list

 ##213 IRC on freenode.net

 Via the Web:

 http://webchat.freenode.net/?channels=%23%23213

 Via your own IRC client:

 ##213 on irc.freenode.net .

 Skype/IM with course staff
 gkesden on AIM, Yahoo, MSN, Gtalk, etc

 TAs will introduce themselves and contact information during recitation

 Anything else we can do?
 How can we help? Be proactive. Just ask. We’re here to help!

32

Carnegie Mellon

Welcome
and Enjoy!

