Carnegie Mellon

Bits, Bytes, and Integers (1-2)
15-213/18-213/15-513: Introduction to Computer Systems
2 Lecture, 24 May 2012

Instructors:
Gregory Kesden

Last Time: Course Overview

m Course Theme:

Abstraction Is Good But Don’t Forget Reality

m 5 Great Realities
" |nts are not Integers, Floats are not Reals
" You've Got to Know Assembly
" Memory Matters
" There’s more to performance than asymptotic complexity
= Computers do more than execute programs

m Administrative / Logistics details

Today: Bits, Bytes, and Integers (1-2)

m Representing information as bits
|

Carnegie Mellon

Binary Representations

3.3V
2.8V

0.5V
0.0V

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002t0 11111111>
® Decimal: 010 to 25510

= Hexadecimal 0016 to FFie 0011
= Base 16 number representation gigg

= Use characters ‘0’ to ‘9" and ‘A’ to ‘F’ 0110

+ Write FA1D37B1sin C as e

— OxFA1D37B 1001

— Oxfald37b 1011

ol el L L L
e R N A P R L RN S B S L e
=
o
=
o

1 EH O QW olo|Jdoyoi|a(wN ko

Carnegie Mellon

Literary Hex

m Common 8-byte hex fillers:
= Oxdeadbeef
= (OxcOffeeee
= Can you think of other 8-byte fillers?

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
= Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others

m Compiler + Run-Time System Control Allocation
= Where different program objects should be stored
= All allocation within single virtual address space

Machine Words

m Machine Has “Word Size”

" Nominal size of integer-valued data

= Including addresses
" Most current machines use 32 bits (4 bytes) words

= Limits addresses to 4GB

= Becoming too small for memory-intensive applications
"= High-end systems use 64 bits (8 bytes) words

= Potential address space = 1.8 X 10%° bytes

= x86-64 machines support 48-bit addresses: 256 Terabytes
= Machines support multiple data formats

= Fractions or multiples of word size

= Always integral number of bytes

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit Bytes Addr

m Addresses Specify Byte Words Words '

Locations 0000

. . Addr

= Address of first byte in word - 0001

: : 0000 0002

= Addresses of successive words differ Addr 003
by 4 (32-bit) or 8 (64-bit) =

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

Carnegie Mellon

Data Representations

C Data Type Typical 32-bit m x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

Carnegie Mellon

Byte Ordering

m How should bytes within a multi-byte word be ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address

Carnegie Mellon

Byte Ordering Example

m Big Endian

= |east significant byte has highest address
m Little Endian

= |Least significant byte has lowest address
m Example

= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop $ebx

8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 OOVQO 00 00 cmpl §4x0,0x28(%ebx)
m Deciphering Numbers /

= Value: Ox12ab

= Padto 32 bits: 0x000012ab

= Splitinto bytes: 000012 ab

® Reverse: ab 12 00 00

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
int I
for (i=0;i<len; i++)
printf("%p\tOx%.2x\n",start+i, start[i]);
printf("\n");

}

Printf directives:
%p: Print pointer
%0X: Print Hexadecimal

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0xo6d
Ox11ffffcb9 0x3b
Ox1llffffcba 0x00
Ox11ffffcbb 0x00

Carnegie Mellon

Decimal: 15213

Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A =15213; long int C = 15213:
|IA32, Xx86-64 Sun

|A32 X86-64 Sun

6D
3B
00
00

Int B =-15213;
IA32, x86-64 Sun

Two’s complement representation
(Covered later)

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun IA32 x86-64
EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

Carnegie Mellon

Representing Strings

. . char S[6] = "18243";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha sun
= Standard 7-bit encoding of character set 31 K J 31
= Character “0” has code 0x30 38 |+ .| 2g
— Digit i has code 0x30+i) R
_ _ 32 | | 32
= String should be null-terminated
| 34 [¢ [34
= Final character =0
° ege 33)] 33
m Compatibility 00 k J 00

= Byte ordering not an issue

Carnegie Mellon

Today: Bits, Bytes, and Integers

[|
m Bit-level manipulations

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0(0 O 010 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A’B = 1 when either A=1 or B=1, but not both
~ Ao 1
0|1 O0(0 1
110 111 O

Carnegie Mellon

Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as O

A&~B _
—J Connection when
A -~B
o—< >0 pg-B | ~A&B
~A __ B

~A&B = A"B

Carnegie Mellon

t

Boolean Algebra = Integer Ring

= Commutativity

A|B =BJ|A A+B =B+A

A&B =B&A A*B =B*A
= Associativity

(Al B) |C =A|(B]|C) (A+B)+C = A+(B+()

(A&B)&C = A&(B&C) (A*B)*C = A*(B*C(C)
® Product distributes over sum

A&(B|C) = (A&B)|(A&C) A*(B+C) = A*B+B*C
= Sum and product identities

A|lO0O=A A+0 = A

A&1 =A A*1 =A
m Zero is product annihilator

A&O0 =0 A*0 =0

= Cancellation of negation
~(YA)= A - (-A) = A

Carnegie Mellon

Boolean Algebra # Integer Ring
= Boolean: Sum distributes over product
A|(B&C)=(A|B)&(A]|C) A+(B*C) = (A+B)*(A+C)
= Boolean: Idempotency
A|lA=A A+A=A
= “Alis true” or “Ais true” = “Ais true”
A&A = A A*AzA
= Boolean: Absorption
A|(A&B) = A A+ (A*B)=A
= “Alis true” or “Ais true and B is true” = “Ais true”
A&(A|B) =A A*(A+B)=A
= Boolean: Laws of Complements
A|l~A =1 A+-A=1

= “Ais true” or “Ais false”
® Ring: Every element has additive inverse
A|l~A#0 A+-A=0

Carnegie Mellon

Relations Between Operations

DeMorgan’s Laws
m Express & in terms of |, and vice-versa
e A&B = ~(~A|~B)
» A and B are true if and only if neither A nor B is false
® A|B = ~(~A&~B)
» A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or
e AB = (~A&B)|(A&~B)
» Exactly one of A and B is true
e AB = (A|B)&~A&B)
» Either A is true, or B is true, but not both

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Carnegie Mellon

Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
= aj=1ifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Carnegie Mellon

Bit-Level Operations in C

m Operations &, |, ~, " Availablein C

= Apply to any “integral” data type
= |ong, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)

= ~0x41 = OxBE
= ~010000012 = 101111102
= ~0x00 = OxFF
= ~000000002 = 11111111>
= 0Ox69 & Ox55 = 0x41
= 011010012 & 010101012 = 010000012
= 0x69 | Ox55 = 0x7D

= 011010012 | 010101012 = 01111101>

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, ||,!
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)

= 10x41 = 0Ox00
= I0x00 = 0Ox01
= 1I0x41 - 0x01

= 0Ox69 && 0x55 = 0x01
= 0x69 || 0x55 = 0x01
" p&&*p (avoids null pointer access)

Carnegie Mellon

Shift Operations
m Left Shift: X <<y Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >>y
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

- Throw away extra bits on right Argument x| 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
" Arithmetic shift

= Replicate most significant bit on right

Arith. >> 2| 11101000

m Undefined Behavior

" Shift amount < 0 or > word size

Cool Stuff with Xor

= Bitwise Xor is form of void funny(int *x, int *y)
” {
addition xx = *x A *y; /% $1 */
= With extra property that ky = *x A *y; /* #2 */
every value is its own *x = *x & *y; /* #3 */
additive inverse }
AMA=0
*x *y
Begin | A B
1 A“B B
2 A’B (A*B) "B = A
3 (A*B)“A = B|A
End |B A

Carnegie Mellon

More Fun with Bitvectors

Bit-board representation of chess position:
unsigned long long blk king, wht king, wht rook mv2,..;

wht king = 0x0000000000001000ull;
blk king 0x0004000000000000ull;
wht rook mv2 = 0x10e£f101010101010ull;

/*
* Is black king under attach from
* white rook ?
*/
if (blk king & wht rook mv2)
printf (“Yes\n”) ;

R N W & 00 60 94

Carnegie Mellon

More Bitvector Magic

m Count the number of 1’s in a word
= MIT Hackmem 169:

int bitcount (unsigned int n)

{
unsigned int tmp;

tmp

n - ((n>> 1) & 033333333333)
- ((n >> 2) & 011111111111);
return ((tmp + (tmp >> 3)) & 030707070707)%63;

Carnegie Mellon

More Bitvector Uses

Representation of small sets

Representation of polynomials:
m Important for error correcting codes
m Arithmetic over finite fields, say GF(2/*n)

m Example 0x15213 : x16+ x4+ x2+x°+ x*+ x + 1

Representation of graphs

m A ‘1’ represents the presence of an edge

Representation of bitmap images, icons, cursors, ...

m Exclusive-or cursor patent

Representation of Boolean expressions and logic circuits

Today: Bits, Bytes, and Integers (1-2)

= Summary

Carnegie Mellon

Summary
It’s All About Bits & Bytes

®m Numbers
® Programs
m Text

Different Machines Follow Different Conventions for
m Word size
m Byte ordering
m Representations

Boolean Algebra is the Mathematical Basis
m Basic form encodes “false” as 0, “true” as 1

m General form like bit-level operations in C
® Good for representing & manipulating sets

Carnegie Mellon

Bits, Bytes, and Integers (2-2)
15-213/18-243: Introduction to Computer Systems
3'd Lecture, 24 May 2012

Instructors:
Gregory Kesden

Carnegie Mellon

Last Time: Bits and Bytes

Bits, Bytes, Words
Decimal, binary, hexadecimal representation

|
|
m Virtual memory space, addressing, byte ordering
m Boolean algebra

H

Bit versus logical operations in C

Carnegie Mellon

Today: Integers

m Integers
= Representation: unsigned and signed

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1) w—2 .
BRUKX) = Y x -2 BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| C4 93] 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

[| 1 -
UMin 0 = TMin = -2l
000..0 100...0
| — w_
UMax 2v-1 = TMax = 2%1-1
1111 011...1
m Other Values
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00O0OOOOOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 00OOOOOOO

Carnegie Mellon

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
0010 2 2 .

m Uniqueness

0011 3 3
0100 2 P! = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 = Each representable integer has
0111 7 7 unique bit encoding
1000 8 8 m = Can Invert Mappings
1001 9 —7 . U2B _ BoUL
1010 10 6 (x) =)
1011 11 g = Bit pattern for unsigned
1100 12 —4 integer
1101 13 -3 = T2B(x) = B2T(x)
1110 14 —2 = Bit pattern for two’s comp

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

|
= Conversion, casting
|

Carnegie Mellon

Mapping Between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7’ B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

Ux »(U2B |——+{ B2T - X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

Mapping Signed <> Unsignhed

Unsigned

0111

T2U

1000

U2T

1001

1010

1011

1100

1101

1110

1111

Wl || d|IW|IDN|RL|O

[
o

=
=

[
N

[
w

=
(=3

=
(6]

Mapping Signed <> Unsignhed

Bits Signed Unsigned
0000 0 s
0001 1 n
0010 2 >
0011 3 —

- 3
0100 4 <_> 2
0101 5
5
0110 6 ;
0111 7 -
1000 -8 n
1001 -7 5
1010 -6 e
1011 -5 "'/' 16
11
1100 -4
12
1101 -3
13
1110 -2
14
1111 -1
15

Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B —EF* B2U > UX

Maintain Same Bit Pattern

w—1 0
ux [+[+]+ v oo +[+]+
x [-T+]+ Xy +[+]+
T {x x>0
ux = W
x+2 x<0
Large negative weight
becomes

Large positive weight

Carnegie Mellon

Conversion Visualized

m 2’s Comp. — Unsigned
® QOrdering Inversion

® UMax
® UMax-1

" Negative — Big Positive

_ /_:. TMax +1 | Unsigned
TMax @ ® TMax Range

2’s Complement
Range

&Q

_ TMin

Carnegie Mellon

Signed vs. Unsigned in C

m Constants

= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 42949672590

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find
vulnerabilities in programs

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user _dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_ from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

Carnegie Mellon

M a I IC I 0 u S U Sage /* Declaration of library function memcpy */

void *memcpy (void *dest, void *src, size t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_ from kernel (mybuf, -MSIZE) ;

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signhed and unsigned int
= intiscasttounsigned!!

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

= Expanding, truncating

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

m X = Xy Xppet s Xpye1 s Xy 100 X

k copies of MSB < w >
o 00
X’ () ()

<€ k > € . >

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

b4 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
Yy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m Cautomatically performs sign extension

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

= For small numbers yields expected behavior

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting

Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

~Xx + 1 == -x

m Complement
® QObservation: ~x + x == 1111..111 == -1

Carnegie Mellon

Complement & Increment Examples

x=15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| c4 92| 11000100 10010010

~x+1 -15213]1 €4 93| 11000100 10010011

)4 -15213]1 €4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 O/ 00 00| 00000000 00000000

~0 -1 FF FF| 11111111 11111111

~0+1 0 00 00| 00000000 00OOOOOOO

Carnegie Mellon

Unsigned Addition

Operands: w bits u °eoe
—|_ V o 00

True Sum: w+1 bits . —

Discard Carry: wbits ~ UAdd, (u , v) o

m Standard Addition Function

" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = u+v mod?2¥

u+v u+v<2?

UAdd,,(u,v) =
wltoV) {u+v—2w u+v>2"

Carnegie Mellon

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers uv Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

Visualizing Unsigned Addition
m Wraps Around Overflow

" |ftrue sum > 2% \

= At most once

True Sum

w+lT
2 Overflow

-

0

Modular Sum

Carnegie Mellon

Mathematical Properties

m Modular Addition Forms an Abelian Group
" Closed under addition
0 <UAdd,(u,v) < 2¥-1
= Commutative
UAdd (u,v) = UAdd (v, u)
= Associative
UAdd (t, UAdd (u, v)) = UAdd, (UAdd (t, u), v)
= 0is additive identity
UAdd,(u,0) = u
= Every element has additive inverse

= Let UComp,,(u) =2%—-u
UAdd,(u, UComp,(u)) = O

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u 200
+ v o 00

True Sum: w+1 bits
u + V o000
Discard Carry: w bits TAdd, (u, v) XK

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

= Will give s ==

TAdd Overflow

m Functionality

True sum requires w+1
bits
Drop off MSB

Treat remaining bits as
2’s comp. integer

0111..

0 100...

0 000...

1011...

1 000...

Carnegie Mellon

True Sum
271 1
PosO
> TAdd Result
2w-1 &+ T 011.1
0O -+ T 000..0
—2w-l-1 + < 100..0
| NegOver

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,

(u,v)
= Range from -8 to +7
m Wraps Around
= |f sum > 2wt
= Becomes negative
= At most once
" |fsum < —2w-1
= Becomes positive
= At most once

u 46 _ PosOver

Carnegie Mellon

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v)
" True sum requires w+1 bits >0 \
= Drop off MSB Vv
= Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(U+v+ oW u+ty < TMin,, (NegOver)
TAdd,(u,v) = u+v TMin,, <u+v<TMax,,
u+v— 2W TMax,, <u+V (pPosOver)

Carnegie Mellon

Mathematical Properties of TAdd

m Isomorphic Group to unsigneds with UAdd
" TAdd,(u,v)= U2T(UAdd (T2U(u), T2U(v)))
= Since both have identical bit patterns

m Two’s Complement Under TAdd Forms a Group

" Closed, Commutative, Associative, O is additive identity
= Every element has additive inverse

—Uu = TMan

1C =
ompy, (1) {TMinw u=TMin,

Carnegie Mellon

Multiplication

m Computing Exact Product of w-bit numbers x, y
= Either signed or unsigned

m Ranges
= Unsigned:0<x*y<(2w-1)2 = 22w -2w+1 4+ 1
= Up to 2w bits
" Two’s complement min: x * y > (-2w-1)*(2w-1-1) = —22w-24 w1
= Up to 2w-1 bits
= Two’s complement max: x * y < (-2w1) 2 = 22w=2
= Up to 2w bits, but only for (TMin,,)?
m Maintaining Exact Results
" Would need to keep expanding word size with each product computed
= Done in software by “arbitrary precision” arithmetic packages

Carnegie Mellon

Unsigned Multiplication in C

u o 00
Operands: w bits
% o000
\ %
True Product: 2*w bits ¥ - Vv o0 0 oo
UMult (u , v) <o

Discard w bits: w bits

m Standard Multiplication Function

" |gnores high order w bits

m Implements Modular Arithmetic
UMult (u,v)= u -v mod?2¥

Carnegie Mellon

Code Security Example #2

m SUN XDR library

= Widely used library for transferring data between machines

void* copy elements (void *ele src[], int ele _cnt, size t ele_size);

ele src

- L ' =

\

dhahdial

malloc(ele_cnt * ele_size)

Carnegie Mellon

XDR Code

void* copy elements (void *ele src[], int ele cnt, size t ele size) {
/*
* Allocate buffer for ele cnt objects, each of ele size bytes
* and copy from locations designated by ele src

*/
void *result = malloc(ele cnt * ele size);
if (result == NULL)

/* malloc failed */
return NULL;

void *next = result;

int i;

for (i = 0; 1 < ele_cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele src[i], ele size);
/* Move pointer to next memory region */
next += ele size;

}

return result;

XDR Vulnerability

malloc(ele_cnt * ele_size)

m What if:
" ele cnt =220 4+1
" ele size = 4096 =212

=" Allocation="??

m How can | make this function secure?

Signed Multiplication in C

u o 00
Operands: w bits
* o000
\%
True Product: 2*w bits U * V XX voo
TMult (u , v) oo

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
u o 00
Operands: w bits
* 2k Q Y Q 1 Q oee m
True Product: w+k bits u - 2K s o0 Qf e 1010
Discard k bits: w bits UMult, (u , 2%) eoo 0] e 1010
TMult, (u , 2¥)
m Examples
" g < 3 == u * 8
" u<< 5 -u<x<3 == u * 24

"= Most machines shift and add faster than multiply
= Compiler generates this code automatically

Carnegie Mellon

Compiled Multiplication Code

C Function

int mull2 (int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation
leal (%eax,%eax,2), %eax t <- x+x*2
sall $2, %eax return t << 2;

m C compiler automatically generates shift/add code when
multiplying by constant

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= g > kagives Lu / 2¢]
= Uses logical shift

k
0 q u Ll see Binary Point
perandas:
l 2k Q YY) Q 1 Q Y m
Division: U / 2k Q Y m YY) { Y
Result: | /2] [0l - 100
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
X >> 8 59.4257813 59 00 3B| 00000000 00111011

Carnegie Mellon

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)

{

return x/8;

}

Compiled Arithmetic Operations Explanation
shrl $3, %eax # Logical shift

return x >> 3;

m Uses logical shift for unsigned

m For Java Users
" |ogical shift written as >>>

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2¢]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

k
X see see Binary Point
Operands:
l 2k Q YY) Q 1 Q YY) M /
Division: x / 2k L Ll I/ see
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want| x / 2¢¥] (Round Toward 0)
= Compute as | (x+2k-1)/ 2k
= InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: u L + 1 10 010
+2k—1 10 0101 111
7 oos 1T eee |11 Binary Point
Divisor: | 2k 101 e [0[110] e« [0]0] /
[y 2k Ol TT1TT _’11 e 1111

Biasing has no effect

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x U
_|_2k_1 Q 000 m 1 o0 1 1
]

\ J
Y
Incremented by 1 Binary Point
Divisor: | 2k 101 e [0[110] e« [0]0] /
[x/2¢] A AT 111
\ J

Y

Incremented by 1

Biasing adds 1 to final result

Carnegie Mellon

Compiled Signed Division Code

C Function

int idiv8 (int x)

{

return x/8;

}

Compiled Arithmetic Operations Explanation
testl %eax, %eax if x <0
Js L4 x += 7;

L3: # Arithmetic shift
sarl $3, %eax return x >> 3;
ret

L4 : [] [[[
addl $7, %eax m Uses arithmetic shift for int
jmp L3 m ForJava Users

= Arith. shift written as >>

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2w
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2w

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Carnegie Mellon

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

Carnegie Mellon

Today: Integers

Summary

Carnegie Mellon

Properties of Unsighed Arithmetic

m Unsigned Multiplication with Addition Forms
Commutative Ring
= Addition is commutative group
" Closed under multiplication
0 <UMult, (u,v) £ 2% -1
= Multiplication Commutative
UMult,(u,v) = UMult,(v, u)
= Multiplication is Associative
UMult,(t, UMult (u, v)) = UMult, (UMult,[(t, u), v)
= 1 is multiplicative identity
UMult, (u, 1) = u
= Multiplication distributes over addtion
UMult (t, UAdd,(u, v)) = UAdd, (UMult(t, u), UMult,(t, v))

Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
= Unsigned multiplication and addition
= Truncating to w bits
= Two’s complement multiplication and addition
= Truncating to w bits

m Both Form Rings
® |somorphic to ring of integers mod 2%
m Comparison to (Mathematical) Integer Arithmetic

= Both are rings
" |ntegers obey ordering properties, e.g.,

u>0 = UuU+v>v
u>0,v>0 = u-v>0

" These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes

unsigned 1i;
for (1 = cnt-2; 1 >= 0; i--)
af[i] += a[i+1l];
= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

= Logical right shift, no sign extension

Integer C Puzzles

Argue that it is always true or
provide a counter example.

Assume 32-bit architecture

Initialization

int x = foo();
inty = bar();
unsigned ux = x;

unsigned uy = y;

x<0

ux>=0
X&7==

ux > -1

X>y
X*x>=0
x>08&&y>0
x>=0

x<=0
(x|-x)>>31 == -
ux >> 3 == ux/8
X >>3 ==x/8
x&(x-1)!=0

Carnegie Mellon

= ((x"2)<0)
= (x<<30)<0
= X<-y

= Xx+y>0

= x<=(
= =x>=

