Bits, Bytes, and Integers (1-2)

15-213/18-213/15-513: Introduction to Computer Systems 2nd Lecture, 24 May 2012

Instructors:

Gregory Kesden

Last Time: Course Overview

Course Theme:

Abstraction Is Good But Don't Forget Reality

- 5 Great Realities
 - Ints are not Integers, Floats are not Reals
 - You've Got to Know Assembly
 - Memory Matters
 - There's more to performance than asymptotic complexity
 - Computers do more than execute programs
- Administrative / Logistics details

Today: Bits, Bytes, and Integers (1-2)

- Representing information as bits
- Bit-level manipulations
- Summary

Binary Representations

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
U	12	1100
D	13	1101
E	14	1110
F	15	1111

Literary Hex

- **■** Common 8-byte hex fillers:
 - 0xdeadbeef
 - 0xc0ffeeee
 - Can you think of other 8-byte fillers?

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11fffcba 0x00
0x11ffffcbb 0x00
```

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation (Covered later)

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18243";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Summary

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

■ A | B = 1 when either A=1 or B=1

I	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Boolean Algebra ≈ **Integer Ring**

Commutativity

$$A \mid B = B \mid A$$

 $A \& B = B \& A$

Associativity

$$(A | B) | C = A | (B | C)$$

 $(A \& B) \& C = A \& (B \& C)$

Product distributes over sum

$$A \& (B | C) = (A \& B) | (A \& C)$$
 $A * (B + C) = A * B + B * C$

Sum and product identities

$$A \mid 0 = A$$
$$A \otimes 1 = A$$

Zero is product annihilator

$$A \& 0 = 0$$

Cancellation of negation

$$\sim$$
 (\sim A) = A

$$A + B = B + A$$

$$A * B = B * A$$

$$(A + B) + C = A + (B + C)$$

$$(A * B) * C = A * (B * C)$$

$$A * (B + C) = A * B + B * C$$

$$A + 0 = A$$

$$A * 1 = A$$

$$A * 0 = 0$$

$$-(-A) = A$$

Boolean Algebra ≠

Integer Ring

Boolean: Sum distributes over product

$$A \mid (B \& C) = (A \mid B) \& (A \mid C)$$

$$A + (B * C) \neq (A + B) * (A + C)$$

■ Boolean: *Idempotency*

$$A \mid A = A$$

$$A + A \neq A$$

• "A is true" or "A is true" = "A is true"

$$A \& A = A$$

$$A * A \neq A$$

■ Boolean: *Absorption*

$$A \mid (A \& B) = A$$

$$A + (A * B) \neq A$$

• "A is true" or "A is true and B is true" = "A is true"

$$A \& (A \mid B) = A$$

$$A * (A + B) \neq A$$

■ Boolean: *Laws of Complements*

$$A \mid {}^{\sim}A = 1$$

$$A + -A \neq 1$$

- "A is true" or "A is false"
- Ring: Every element has additive inverse

$$A \mid ^{\sim}A \neq 0$$

$$A + -A = 0$$

Relations Between Operations

DeMorgan's Laws

- Express & in terms of |, and vice-versa
 - $\bullet A \& B = \sim (\sim A \mid \sim B)$
 - » A and B are true if and only if neither A nor B is false
 - $A \mid B = \sim (\sim A \& \sim B)$
 - » A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- $A ^ B = (^ A \& B) | (A \& ^ B)$
 - » Exactly one of A and B is true
- $A ^B = (A | B) & \sim (A & B)$
 - » Either A is true, or B is true, but not both

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- aj = 1 if $j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

Examples (Char data type)

- ~0x41 → 0xBE
 - $\sim 01000001_2 \rightarrow 10111110_2$
- \sim 0x00 → 0xFF
 - $\sim 000000002 \rightarrow 1111111112$
- $0x69 \& 0x55 \rightarrow 0x41$
 - $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&**&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 → 0x00
- !0x00 → 0x01
- !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)

Shift Operations

■ Left Shift: x << y</p>

- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

Right Shift: x >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse

```
A \wedge A = 0
```

	*x	*Y
Begin	A	В
1	A^B	В
2	A^B	$(A^B)^B = A$
3	$(A^B)^A = B$	A
End	В	A

More Fun with Bitvectors

Bit-board representation of chess position:

```
unsigned long long blk_king, wht_king, wht_rook_mv2,...;
```


More Bitvector Magic

- Count the number of 1's in a word
 - MIT Hackmem 169:

More Bitvector Uses

Representation of small sets

Representation of polynomials:

- **■** Important for error correcting codes
- Arithmetic over finite fields, say GF(2^n)
- **Example 0x15213**: $x^{16} + x^{14} + x^{12} + x^9 + x^4 + x + 1$

Representation of graphs

■ A '1' represents the presence of an edge

Representation of bitmap images, icons, cursors, ...

■ Exclusive-or cursor patent

Representation of Boolean expressions and logic circuits

Today: Bits, Bytes, and Integers (1-2)

- Representing information as bits
- Bit-level manipulations
- Summary

Summary

It's All About Bits & Bytes

- Numbers
- Programs
- Text

Different Machines Follow Different Conventions for

- Word size
- Byte ordering
- Representations

Boolean Algebra is the Mathematical Basis

- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets

Bits, Bytes, and Integers (2-2)

15-213/18-243: Introduction to Computer Systems 3rd Lecture, 24 May 2012

Instructors:

Gregory Kesden

Last Time: Bits and Bytes

- Bits, Bytes, Words
- Decimal, binary, hexadecimal representation
- Virtual memory space, addressing, byte ordering
- Boolean algebra
- Bit versus logical operations in C

Today: Integers

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Summary

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex Binary	
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 00000000

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Summary

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

■ 2's Comp. → Unsigned

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffixOU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	OU	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

```
Malicious Usage /* Declaration of library function memcpy */
                          void *memcpy(void *dest, void *src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSTZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
   memcpy(user dest, kbuf, len);
    return len;
}
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Summary

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

W

Sign Extension Example

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101	
У	-15213	C4 93	11000100 10010011	
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011	

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Today: Bits, Bytes, and Integers

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

- Complement
 - Observation: ~x + x == 1111...111 == -1

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	
У	-15213	C4 93	11000100 10010011	

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Unsigned Addition

Operands: w bits

u •••

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w}-1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

u

 $TAdd_{w}(u, v)$

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```


malloc(ele_cnt * ele_size)

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

What if:

```
• ele_cnt = 2<sup>20</sup> + 1
• ele_size = 4096 = 2<sup>12</sup>
```

• Allocation = ??

How can I make this function secure?

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / \mathbf{2}^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathsf{UMult}_{w}(u, v) \leq 2^{w} - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

■ Isomorphic to ring of integers mod 2^w

Comparison to (Mathematical) Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 \Rightarrow $u + v > v$
 $u > 0, v > 0$ \Rightarrow $u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

 $15213 * 30426 == -10030$ (16-bit words)

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Integer C Puzzles

Argue that it is always true or provide a counter example.

Assume 32-bit architecture

Initialization

•
$$x < 0$$
 $\Rightarrow ((x*2) < 0)$
• $ux >= 0$
• $ux > -1$
• $ux > -1$

• x < 0

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0