

Overview, C, and Datalab

15-213/18-243
Eric Faust, Summer 2011

Agenda
 Class overview

− Syllabus

− Expectations

 Remember your C

− GCC, GDB, and Make

− C preprocessor

− Pointers

 Datalab (Due Thursday)

− Bitwise operations: Logical Shift, Arithmetic Shift, And, Or, Xor,
Complement

− Big vs. Little endian

− Useful approaches for datalab

− Old examples

Overview and Expectations
 Syllabus questions?

 Autolab or Shark machine troubles?

– PLEASE see me after
 Our expectations

– Understanding of the C language

– More debugging maturity than 122 or 123

– Put in the effort

• We are here to help, but if you lean on us too
hard, you only cheat yourself.

 Lab grading

– Style

Debugging Quotes
 “As soon as we started programming, we found out to our

surprise that it wasn't as easy to get programs right as we
had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large
part of my life from then on was going to be spent in
finding mistakes in my own programs.” ~ Maurice Wilkes

 “Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug
it” ~ Brian Kernighan

Debugging (Lovingly stolen from 15-410)
 Debugging is hard! Dive in!

 A tale of two stories

– Looking for divergence

– Fractal (you probably won't need much zoom)
 At every level:

– What happened?

• How can I tell what happened?
– What should have happened?

• If you struggle here, come talk to us
 “It crashes” is only the first level

 As always, we are here to help you if you get stuck

Your C Toolchain
 Source code → Compiler → Binary

– Run binary

– Binary probably crashes

• Don't worry, that's what they do.
 Debugger

– Step by step

– Examine world state

• Symbolic debugging
 Build systems

– Make

GCC
 Compiles C source code to x86 assembly, and then

assembles into machine code.

– Compilers are a huge convenience.
 Interesting flags:

– ansi

– Pedantic

– Wall

– Werror

– O2

• !Debugging with optimizations!
– g

• This one will be important to you

GDB
 Single step symbolic debugger

– step, finish

– continue

– print my_list->head
 Invoked via ./gdb <binary>

– At the prompt, give the “run” command to start
execution

– If your binary takes command line arguments, wait
to give those when you give gdb the “run”
command

 Breakpoints

– “Stop when you get here”

– break <file>:<line number>

Make
 Scriptable build system

 Compile and link large programs together, while allowing
multiple files.

– Rebuild things based on “dependencies”
 Change in one file might mean recompiling the whole

project

– Might mean recompiling only that file
 We provide Makefiles for you for all coding labs.

The C Design Template
 Modularity

 Think about interfaces

 Headers

– .h files

– Define interfaces, contain struct definitions
 Code files

– .c files

– Contain implementations and internal helpers
 Link it all together (more on this later)

 static keyword

– “Please don't show this to any other files but me”

C pre-processor
 Sometimes abbreviated cpp

 Runs over the code before the compiler has a chance to
get to it.

 Does not attempt to “understand code”

– Only does textual substitution
 Pre-processor has global state

 Macros

 Magic Numbers

 Headers

#include
 Does a literal line by line inclusion of the text of the other

file.

 Useful for modularity

 Can #include .c or .h files

 <> for “system headers”

– Things in your include path

– Think <stdio.h>
 “” for “local headers”

– Things not in your include path

– Probably in local directory

– Think “btest.h”

#define
 Macros

– “I have a bunch of code that needs to vary at the
variable name level instead of the variable value
level”

– Takes arguments, does code insertion with those
arguments replaced in the appropriate place

• REMEMBER: The pre-processor does not
“understand” your code, it only replaces

 Macros can also have no arguments

– Convenient to hide away those constants that could
change

– #define INITIAL_LENGTH

#ifdef/#ifndef/#undef/#endif
 We can know at pre-process time whether or not

something has already been defined

– Remember, global state
 Useful for the sake of doing “header guards”

– Error: this_will_not_work already defined

– Might anger linker

– What we do is:

• #ifndef __MAGIC_NAME__
• #define __MAGIC_NAME__
• …
• #endif

 #undef un-defines something

Pointers Review
 Memory is a byte-adressable array

– A pointer is just an address to read from or write to

– Big row of PO boxes

– Think Excel spreadsheet with a single row

• Can “merge” cells with multi-byte type
pointers

• Take on lowest addess as “pointer number”
 Using pointers

– & takes the address of something

– * dereferences something

– If you need to, “count stars”, and make sure you
have the right type

– Need a pointer to do an “external change”

Pointer Arithmetic
 When we increment a pointer, we step by sizeof(type)

bytes.

 If we have int * foo, foo + 3 is actually 12 bytes forward!

 Cleverly, this means that foo[3] = *(foo + 3)

Hexadecimal
 Use digits for 0-15 to represent 4 binary bits

– We use 0-F
 Numbers written 0x<hex number>

 Allows fast binary translation, which drastically shrinking
the number of needed digits

Bitshifts
 Logical

– Pad with zeroes

– Left shift always logical

– Right shift logical (for our purposes) on unsigned
types

– 0x0F >> 4 = 0x0F
 Arithmetic

– Sign extend

• Highest order bit the “sign bit” (more
tomorrow)

• Repeat highest bit to maintain signedness
– Signed datatypes arithmetic shift by default

– 0x0F >> 4 = 0xFF

Big vs. Little Endian
 We can encode bytes in one of two orders in memory

 Big Endian

– Encode the bytes just like humans would read them

– Most significant bit of number is at lowest address

– 0xdeadbeef → de ad be ef
 Little Endian (what we use)

– Encode the bytes with the least significant bit at the
lowest address

• Don't change order of bits per byte, just
reorder

– Makes typecasts down in size cheap

• We just read fewer bytes
– 0xdeadbeef → ef be ad de

Other Bitwise Operations
 And

– Final bit is on if both input bits are on
 Or

– Final bit is on if either of input bits is on
 Xor

– Final bit is on if exactly one of input bits is on
 Complement

– Final bit is on if input bit was off, off if input bit was
on

– “Flip every bit”
 Bang (!)

– Maps 0 to 1 and everything else to 0

– Logical negation

Helpful thoughts for Datalab
 “What operations are useful to me here?”

– “What is the problem?”

– “What is this operation good for?”

– We often give you access to more ops than you
would need to solve the problem

 “What about this input makes it special that I can exploit?”

– Datalab solutions are founded around manipulating
what you get, no matter what it is, into a much
smaller set of things that you can count on and use.

Solu%on	
 removed	
 by	
 F11	
 course	
 staff	

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

