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Last Time: Course Overview

 Course Theme: 

 5 Great Realities
 Ints are not Integers, Floats are not Reals

 You’ve Got to Know Assembly

 Memory Matters

 There’s more to performance than asymptotic complexity

 Computers do more than execute programs

 Administrative / Logistics details

Abstraction Is Good But Don’t Forget RealityAbstraction Is Good But Don’t Forget Reality
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Today: Bits, Bytes, and Integers (1-2)

 Representing information as bits

 Bit-level manipulations

 Summary
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Binary Representations

0.0V

0.5V

2.8V

3.3V

0 1 0
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Encoding Byte Values

 Byte = 8 bits
 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Literary Hex

 Common 8-byte hex fillers:
 0xdeadbeef

 0xc0ffeeee

 Can you think of other 8-byte fillers?
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Byte-Oriented Memory Organization

 Programs Refer to Virtual Addresses
 Conceptually very large array of bytes

 Actually implemented with hierarchy of different memory types

 System provides address space private to particular “process”

 Program being executed

 Program can clobber its own data, but not that of others

 Compiler + Run-Time System Control Allocation
 Where different program objects should be stored

 All allocation within single virtual address space

• • •
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Machine Words

 Machine Has “Word Size”
 Nominal size of integer-valued data

 Including addresses

 Most current machines use 32 bits (4 bytes) words

 Limits addresses to 4GB

 Becoming too small for memory-intensive applications

 High-end systems use 64 bits (8 bytes) words

 Potential address space ≈ 1.8 X 1019 bytes

 x86-64 machines support 48-bit addresses: 256 Terabytes

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes
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Word-Oriented Memory Organization

 Addresses Specify Byte 
Locations
 Address of first byte in word

 Addresses of successive words differ 
by 4 (32-bit) or 8 (64-bit)
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Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8
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Byte Ordering

 How should bytes within a multi-byte word be ordered in 
memory?

 Conventions
 Big Endian: Sun, PPC Mac, Internet

 Least significant byte has highest address

 Little Endian: x86

 Least significant byte has lowest address
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Byte Ordering Example

 Big Endian
 Least significant byte has highest address

 Little Endian
 Least significant byte has lowest address

 Example
 Variable x has 4-byte representation 0x01234567

 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Address Instruction Code Assembly Rendition

8048365: 5b                   pop    %ebx

8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00
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Examining Data Representations

 Code to Print Byte Representation of Data
 Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

typedef unsigned char *pointer;

void 

}

typedef unsigned char *pointer;

void show_bytes(pointer start, int len){

int i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}
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show_bytes Execution Example

int a = 15213;

printf("int

show_bytes((pointer

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;

0x11ffffcb8

0x11ffffcb9

0x11ffffcba

0x11ffffcbb

int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00
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Representing Integers
Decimal: 15213

Binary:

Hex:

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

(Covered later)

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32
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Representing Pointers

Different compilers & machines assign different locations to objects

int B = -15213;

int

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

D4

F8

FF

BF

0C

89

EC

FF

FF

7F

00

00
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char S[6] = "18243";char S[6] = "18243";char S[6] = "18243";char S[6] = "18243";

Representing Strings

 Strings in C
 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

– Digit i has code 0x30+i

 String should be null-terminated

 Final character = 0

 Compatibility
 Byte ordering not an issue

Linux/Alpha Sun

31

38

32

34

33

00

31

38

32

34

33

00
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Summary
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Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And

 A&B = 1 when both A=1 and B=1

Or

 A|B = 1 when either A=1 or B=1

Not

 ~A = 1 when A=0

Exclusive-Or (Xor)

 A^B = 1 when either A=1 or B=1, but not both
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Application of Boolean Algebra

 Applied to Digital Systems by Claude Shannon
 1937 MIT Master’s Thesis

 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

A&~B | ~A&B

A&~B

~A&B = A^B
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Boolean Algebra ≈ Integer Ring

 Commutativity

A | B    =  B | A A + B  =  B + A

A & B    =  B & A A * B  =  B * A

 Associativity

(A |  B)  | C    =  A | (B | C) (A + B) + C  =  A + (B + C)

(A & B) & C    =  A & (B & C) (A * B) * C  =  A * (B * C)

 Product distributes over sum

A & (B | C)  =  (A & B) | (A & C) A * (B + C)  =  A * B + B * C

 Sum and product identities

A | 0  =  A A + 0  =  A

A & 1  =  A A * 1  = A 

 Zero is product annihilator

A & 0  =  0 A * 0  =  0

 Cancellation of negation

~ (~ A) =  A – (– A)  =  A
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Boolean Algebra    ≠          Integer Ring

 Boolean: Sum distributes over product

A | (B & C)  =  (A | B) & (A | C) A + (B * C)   (A + B) * (A + C)

 Boolean: Idempotency

A | A  =  A A  + A  A

 “A is true” or “A is true” = “A is true”

A & A  =  A A  * A  A

 Boolean: Absorption

A | (A & B)  =  A A + (A * B)  A

 “A is true” or “A is true and B is true” = “A is true”

A & (A | B)  =  A A * (A + B)  A

 Boolean: Laws of Complements

A | ~A  =  1 A  + –A  1

 “A is true” or “A is false”

 Ring: Every element has additive inverse

A | ~A  0 A + –A = 0
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Relations Between Operations

DeMorgan’s LawsDeMorgan’s Laws

 Express & in terms of |, and vice-versa

 A & B  =  ~(~A | ~B)

» A and B are true if and only if neither A nor B is false

 A | B  =  ~(~A & ~B)

» A or B are true if and only if A and B are not both false

ExclusiveExclusive--Or using Inclusive OrOr using Inclusive Or
 A ^ B  =  (~A & B) | (A & ~B)

» Exactly one of A and B is true

 A ^ B  =  (A | B) & ~(A & B)

» Either A is true, or B is true, but not both
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General Boolean Algebras

 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010
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Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 &    Intersection 01000001 { 0, 6 }

 |     Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41  0xBE

 ~010000012  101111102

 ~0x00  0xFF

 ~000000002  111111112

 0x69 & 0x55  0x41

 011010012 & 010101012  010000012

 0x69 | 0x55  0x7D

 011010012 | 010101012  011111012
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Contrast: Logic Operations in C

 Contrast to Logical Operators

 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41   0x00

 !0x00   0x01

 !!0x41   0x01

 0x69 && 0x55   0x01

 0x69 || 0x55   0x01

 p && *p (avoids null pointer access)
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Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on right

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Cool Stuff with Xor

void void funny(intfunny(int **xx, , intint **yy))

{{

**xx = *= *xx ^ *^ *yy;    /* #1 */;    /* #1 */

**yy = *= *xx ^ *^ *yy;    /* #2 */;    /* #2 */

**xx = *= *xx ^ *^ *yy;    /* #3 */;    /* #3 */

}}

 Bitwise Xor is form of 

addition

 With extra property that 

every value is its own 

additive inverse

A ^ A = 0

BABegin
BA^B1
(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x
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More Fun with Bitvectors
BitBit--board representation of chess position:board representation of chess position:

unsigned long long blk_king, wht_king, wht_rook_mv2,…;

a  b c d e f g h

8

7

6

5

4

3

2

1

0 1 2

61 62 63

wht_king = 0x0000000000001000ull;

blk_king = 0x0004000000000000ull;

wht_rook_mv2 = 0x10ef101010101010ull;

...

/*

* Is black king under attach from

* white rook ?

*/

if (blk_king & wht_rook_mv2)

printf(”Yes\n”);
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More Bitvector Magic

 Count the number of 1’s in a word
 MIT Hackmem 169:

int bitcount(unsigned int n)

{

unsigned int tmp;

tmp = n - ((n >> 1) & 033333333333)

- ((n >> 2) & 011111111111);

return ((tmp + (tmp >> 3)) & 030707070707)%63;

}
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More Bitvector Uses

Representation of small setsRepresentation of small sets

Representation of polynomials:Representation of polynomials:

 Important for error correcting codes

 Arithmetic over finite fields, say GF(2^n)

 Example 0x15213 : x16 + x14 + x12 + x9 + x4 + x + 1

Representation of graphsRepresentation of graphs

 A ‘1’ represents the presence of an edge

Representation of bitmap images, icons, cursors, …Representation of bitmap images, icons, cursors, …

 Exclusive-or cursor patent

Representation of Boolean expressions and logic circuitsRepresentation of Boolean expressions and logic circuits
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Today: Bits, Bytes, and Integers (1-2)

 Representing information as bits

 Bit-level manipulations

 Summary
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Summary
It’s All About Bits & BytesIt’s All About Bits & Bytes

 Numbers

 Programs

 Text

Different Machines Follow Different Conventions forDifferent Machines Follow Different Conventions for

 Word size

 Byte ordering

 Representations

Boolean Algebra is the Mathematical BasisBoolean Algebra is the Mathematical Basis

 Basic form encodes “false” as 0, “true” as 1

 General form like bit-level operations in C
 Good for representing & manipulating sets


