
Carnegie Mellon

Bits, Bytes, and Integers (1-2)
15-213/18-243: Introduction to Computer Systems
2nd Lecture, 19 May 2011

Instructors:

Gregory Kesden

Carnegie Mellon

Last Time: Course Overview

 Course Theme:

 5 Great Realities
 Ints are not Integers, Floats are not Reals

 You’ve Got to Know Assembly

 Memory Matters

 There’s more to performance than asymptotic complexity

 Computers do more than execute programs

 Administrative / Logistics details

Abstraction Is Good But Don’t Forget RealityAbstraction Is Good But Don’t Forget Reality

Carnegie Mellon

Today: Bits, Bytes, and Integers (1-2)

 Representing information as bits

 Bit-level manipulations

 Summary

Carnegie Mellon

Binary Representations

0.0V

0.5V

2.8V

3.3V

0 1 0

Carnegie Mellon

Encoding Byte Values

 Byte = 8 bits
 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

Literary Hex

 Common 8-byte hex fillers:
 0xdeadbeef

 0xc0ffeeee

 Can you think of other 8-byte fillers?

Carnegie Mellon

Byte-Oriented Memory Organization

 Programs Refer to Virtual Addresses
 Conceptually very large array of bytes

 Actually implemented with hierarchy of different memory types

 System provides address space private to particular “process”

 Program being executed

 Program can clobber its own data, but not that of others

 Compiler + Run-Time System Control Allocation
 Where different program objects should be stored

 All allocation within single virtual address space

• • •

Carnegie Mellon

Machine Words

 Machine Has “Word Size”
 Nominal size of integer-valued data

 Including addresses

 Most current machines use 32 bits (4 bytes) words

 Limits addresses to 4GB

 Becoming too small for memory-intensive applications

 High-end systems use 64 bits (8 bytes) words

 Potential address space ≈ 1.8 X 1019 bytes

 x86-64 machines support 48-bit addresses: 256 Terabytes

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes

Carnegie Mellon

Word-Oriented Memory Organization

 Addresses Specify Byte
Locations
 Address of first byte in word

 Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8

Carnegie Mellon

Byte Ordering

 How should bytes within a multi-byte word be ordered in
memory?

 Conventions
 Big Endian: Sun, PPC Mac, Internet

 Least significant byte has highest address

 Little Endian: x86

 Least significant byte has lowest address

Carnegie Mellon

Byte Ordering Example

 Big Endian
 Least significant byte has highest address

 Little Endian
 Least significant byte has lowest address

 Example
 Variable x has 4-byte representation 0x01234567

 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

Carnegie Mellon

Examining Data Representations

 Code to Print Byte Representation of Data
 Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

typedef unsigned char *pointer;

void

}

typedef unsigned char *pointer;

void show_bytes(pointer start, int len){

int i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

Carnegie Mellon

show_bytes Execution Example

int a = 15213;

printf("int

show_bytes((pointer

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;

0x11ffffcb8

0x11ffffcb9

0x11ffffcba

0x11ffffcbb

int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

Carnegie Mellon

Representing Integers
Decimal: 15213

Binary:

Hex:

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

(Covered later)

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

Carnegie Mellon

Representing Pointers

Different compilers & machines assign different locations to objects

int B = -15213;

int

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

D4

F8

FF

BF

0C

89

EC

FF

FF

7F

00

00

Carnegie Mellon

char S[6] = "18243";char S[6] = "18243";char S[6] = "18243";char S[6] = "18243";

Representing Strings

 Strings in C
 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

– Digit i has code 0x30+i

 String should be null-terminated

 Final character = 0

 Compatibility
 Byte ordering not an issue

Linux/Alpha Sun

31

38

32

34

33

00

31

38

32

34

33

00

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Summary

Carnegie Mellon

Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And

 A&B = 1 when both A=1 and B=1

Or

 A|B = 1 when either A=1 or B=1

Not

 ~A = 1 when A=0

Exclusive-Or (Xor)

 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

Application of Boolean Algebra

 Applied to Digital Systems by Claude Shannon
 1937 MIT Master’s Thesis

 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

A&~B | ~A&B

A&~B

~A&B = A^B

Carnegie Mellon

Boolean Algebra ≈ Integer Ring

 Commutativity

A | B = B | A A + B = B + A

A & B = B & A A * B = B * A

 Associativity

(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)

(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

 Product distributes over sum

A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

 Sum and product identities

A | 0 = A A + 0 = A

A & 1 = A A * 1 = A

 Zero is product annihilator

A & 0 = 0 A * 0 = 0

 Cancellation of negation

~ (~ A) = A – (– A) = A

Carnegie Mellon

Boolean Algebra ≠ Integer Ring

 Boolean: Sum distributes over product

A | (B & C) = (A | B) & (A | C) A + (B * C)  (A + B) * (A + C)

 Boolean: Idempotency

A | A = A A + A  A

 “A is true” or “A is true” = “A is true”

A & A = A A * A  A

 Boolean: Absorption

A | (A & B) = A A + (A * B)  A

 “A is true” or “A is true and B is true” = “A is true”

A & (A | B) = A A * (A + B)  A

 Boolean: Laws of Complements

A | ~A = 1 A + –A  1

 “A is true” or “A is false”

 Ring: Every element has additive inverse

A | ~A  0 A + –A = 0

Carnegie Mellon

Relations Between Operations

DeMorgan’s LawsDeMorgan’s Laws

 Express & in terms of |, and vice-versa

 A & B = ~(~A | ~B)

» A and B are true if and only if neither A nor B is false

 A | B = ~(~A & ~B)

» A or B are true if and only if A and B are not both false

ExclusiveExclusive--Or using Inclusive OrOr using Inclusive Or
 A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true

 A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, but not both

Carnegie Mellon

General Boolean Algebras

 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Carnegie Mellon

Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41  0xBE

 ~010000012  101111102

 ~0x00  0xFF

 ~000000002  111111112

 0x69 & 0x55  0x41

 011010012 & 010101012  010000012

 0x69 | 0x55  0x7D

 011010012 | 010101012  011111012

Carnegie Mellon

Contrast: Logic Operations in C

 Contrast to Logical Operators

 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41  0x00

 !0x00  0x01

 !!0x41  0x01

 0x69 && 0x55  0x01

 0x69 || 0x55  0x01

 p && *p (avoids null pointer access)

Carnegie Mellon

Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on right

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

Cool Stuff with Xor

void void funny(intfunny(int **xx, , intint **yy))

{{

**xx = *= *xx ^ *^ *yy; /* #1 */; /* #1 */

**yy = *= *xx ^ *^ *yy; /* #2 */; /* #2 */

**xx = *= *xx ^ *^ *yy; /* #3 */; /* #3 */

}}

 Bitwise Xor is form of

addition

 With extra property that

every value is its own

additive inverse

A ^ A = 0

BABegin
BA^B1
(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

Carnegie Mellon

More Fun with Bitvectors
BitBit--board representation of chess position:board representation of chess position:

unsigned long long blk_king, wht_king, wht_rook_mv2,…;

a b c d e f g h

8

7

6

5

4

3

2

1

0 1 2

61 62 63

wht_king = 0x0000000000001000ull;

blk_king = 0x0004000000000000ull;

wht_rook_mv2 = 0x10ef101010101010ull;

...

/*

* Is black king under attach from

* white rook ?

*/

if (blk_king & wht_rook_mv2)

printf(”Yes\n”);

Carnegie Mellon

More Bitvector Magic

 Count the number of 1’s in a word
 MIT Hackmem 169:

int bitcount(unsigned int n)

{

unsigned int tmp;

tmp = n - ((n >> 1) & 033333333333)

- ((n >> 2) & 011111111111);

return ((tmp + (tmp >> 3)) & 030707070707)%63;

}

Carnegie Mellon

More Bitvector Uses

Representation of small setsRepresentation of small sets

Representation of polynomials:Representation of polynomials:

 Important for error correcting codes

 Arithmetic over finite fields, say GF(2^n)

 Example 0x15213 : x16 + x14 + x12 + x9 + x4 + x + 1

Representation of graphsRepresentation of graphs

 A ‘1’ represents the presence of an edge

Representation of bitmap images, icons, cursors, …Representation of bitmap images, icons, cursors, …

 Exclusive-or cursor patent

Representation of Boolean expressions and logic circuitsRepresentation of Boolean expressions and logic circuits

Carnegie Mellon

Today: Bits, Bytes, and Integers (1-2)

 Representing information as bits

 Bit-level manipulations

 Summary

Carnegie Mellon

Summary
It’s All About Bits & BytesIt’s All About Bits & Bytes

 Numbers

 Programs

 Text

Different Machines Follow Different Conventions forDifferent Machines Follow Different Conventions for

 Word size

 Byte ordering

 Representations

Boolean Algebra is the Mathematical BasisBoolean Algebra is the Mathematical Basis

 Basic form encodes “false” as 0, “true” as 1

 General form like bit-level operations in C
 Good for representing & manipulating sets

