
Carnegie Mellon

15/18-213 Recitation:
Multithreaded Synchronization

Isaac Manjarres
Recitation 14: 30 Nov 2015

Carnegie Mellon

Agenda

■  Proxy Lab
■  Basic server code examples
■  Debugging tools

■  Concurrency
■  The Good, The Bad, and The Ugly
■  Shared Memory: Synchronization

▪  Critical Sections and Locking
■  Common bugs

Carnegie Mellon

Proxy Lab
■  Due next Tuesday on December 8th, 2015

■  You may use a MAX of two late days
■  Make it robust to unexpected hiccups in input

■  The Internet is standardized, but not really

Carnegie Mellon

The Echo Server – Sequential Handling
void echo(int connfd) {

size_t n; char buf[MAXLINE]; rio_t rio;
// initialize robust io for reading on file descriptor
Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", (int)n);
// read to buffer, and write it back
Rio_writen(connfd, buf, n);

}
}

Carnegie Mellon

The Echo Server – Sequential Handling

int main(int argc, char **argv) {

 int listenfd, connfd;
 struct sockaddr_storage clientaddr; socklen_t clientlen;
 char client_hostname[MAXLINE]; client_port[MAXLINE];
 listenfd = Open_listenfd(argv[1]);
 while(1) { // Handle requests one at a time. I hope I’m not popular!
 clientlen = sizeof(struct sockaddr_storage); // Important!
 connfd = Accept(listenfd, (SA*)&clientaddr, &clientlen);
 Getnameinfo((SA*)&clientaddr, clientlen, client_hostname,
 MAXLINE, client_port, MAXLINE, 0);
 echo(connfd);
 Close(connfd);
 }
 assert(0);

}

Carnegie Mellon

The Echo Server: Finding Its Weakness

Using telnet, we can observe a weakpoint within this
iterative approach.

The second client cannot connect, because echo has

not yet closed its connection with the first client.

telnet localhost 15213

./echo 15213 telnet localhost 15213

Carnegie Mellon

More Advanced Debugging

■  Telnet requires you to type everything yourself
■  Web protocols (like HTTP) can be tedious to type
■  Use curl to form requests for you
curl --proxy http://localhost:port url.com
■  Redirect output using >, for non-text files
■  Don’t forget that binary data is not the same as text

data
■  Be careful when using functions that are meant to

operate only on strings. They will not work properly
with binary data

Carnegie Mellon

How Threads Work: Nuances

■  Threads run within the same process context
■  Arbitrary interleaving and parallelization similar to

processes from Shell Lab
■  But keep in mind they are separate logical flows, not

separate processes
■  This implies that there are still context switches, much

like with processes, but they are of less duration since
threads have less context to store away than processes

Carnegie Mellon

Critical Points for Threads
■  Threads have their own:

■ Thread ID
■ Stack(contained within the stack area for that process)
■ Stack Pointer
■ Instruction Pointer
■ General Purpose Registers
■ Status Codes

■  Threads share:
■ Code sections
■ Heap
■ Open files

Carnegie Mellon

Anatomy of pthread_create

■  Threads created with pthread_create:

int pthread_create(pthread_t *threadID,

const pthread_attr_t *attr,
void *(*start_routine)(void *), void

*arg);

Pointer to a
variable that will
hold the new
thread’s ID

NULL for this course

Pointer to a function
that takes in a void
pointer, and returns a
void pointer. This
function is what the
new thread will
execute.

Pointer to an argument for the function
that the thread will execute. Can pass
Multiple arguments by putting them in
a struct and passing a pointer to the
struct

Carnegie Mellon

Working Together: When to use Threads

Let’s sum up the elements in an array.

The boring way:

int sum = 0;
for (int i = 0; i < n; i++)
sum += nums[i];

Carnegie Mellon

Sums: The Fun Way
void *thread_fun(void *vargp) {
 int myid = *((int *)vargp);
 size_t start = myid * nelems_per_thread;
 size_t end = start + nelems_per_thread;
 size_t i;
 size_t index = myid*spacing;
 data_t sum = 0;
 for (i = start; i < end; i++) // sum our section
 sum += i;
 psum[index] = sum;
 return NULL;
}

Carnegie Mellon

Sums: The Fun Way
nelems_per_thread = nelems / nthreads;

// Create threads and wait for them to finish
for (i = 0; i < nthreads; i++) {

myid[i] = i;
Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);

Carnegie Mellon

Sums: The Fun Way
result = 0;
// Add up the partial sums computed by each thread
for (i = 0; i < nthreads; i++)

result += psum[i*spacing];
// Add leftover elements
for (e = nthreads * nelems_per_thread; e < nelems; e++)

result += e;

return result;

Carnegie Mellon

Advantages & Disadvantages

Good:
■  We can (potentially) make it faster
■  We can exploit better use of the cache

Bad:
■  Hard to write!
■  Shared resources difficult to manage

Here, we provide mutual exclusion by going to different
sections of the array between threads, but we can’t
always do this.

Carnegie Mellon

Critical Sections and Shared Variables

Let’s try some more counting with threads.

volatile int total = 0;
void incr(void *ptr) {
 pthread_detach(pthread_self());
 for (int i = 0; i < *ptr; i++)

total++;
}

Carnegie Mellon

Critical Sections and Shared Variables
#define NTHREADS 2
#define NINCR 100
int main() {
 pthread_t tids[NTHREADS];
 int y = NINCR;
 for (int i = 0; i < NTHREADS; i++)

 pthread_create(&tids[i], NULL, incr, &y);
 // output will range between NTHREADS-y*NTHREADS
 printf(“total is: %d”, total);
}

Carnegie Mellon

What happens

total

thread 1 thread 2

1
2

2

3 2

1 1

0

2

Carnegie Mellon

Mutexes
Solution: Lock/suspend execution of thread until resource is
“acquired”

volatile int total = 0;
pthread_mutex_t M;

void incr(void *ptr) {

pthread_detach(pthread_self());

for (int i = 0; i < *ptr; i++) {
 pthread_mutex_lock(&M);

total++; // CRITICAL SECTION

pthread_mutex_unlock(&M);

}

}

Carnegie Mellon

Mutexes
Remember to initialize the mutex first!

#define NTHREADS 2
#define NINCR 100

volatile int total = 0;
pthread_mutex_t M;
...

int main() {
 ...

 pthread_mutex_init(&M);
 ...
}

Carnegie Mellon

Semaphores and Atomicity
■  A semaphore is a special counter with an invariant

■ Let s represent some semaphore, and T be the time domain

■ Invariant: At any given time, the value of a semaphore is non-negative (i.e. ∀
𝑡∈𝑇. 𝑣𝑎𝑙(𝑠)≥0)

■  Mutexes are a subclass of semaphores in the sense that they either have a value
of 0 or 1

■  P(s) operation locks a resource (by decrementing the value of s) such that when
another thread tries to lock the resource by calling P(s), the value may be 0, and
that thread will be suspended until the value of s is greater than 0

■  V(s) operation frees a resource (by incrementing the value of s) such that when it
is called, s now has a value greater than 0, and any thread that may have been
asleep as a result of waiting for s to be free can now be woken up

■  Atomic Operation-An operation that is not interrupted once it has begun executing
■ P and V operations are atomic

Carnegie Mellon

Problem solved… right?

■  Locks in threads are slow
■  This is a terrible way to sum up to 200
■  Avoid shared memory if you can

■  This is one of the simpler models for thread sync.
■  Reading vs. Writing
■  Producers and Consumers

Carnegie Mellon

Synchronization Gone Wrong Part 1

Carnegie Mellon

Synchronization Gone Wrong Part 2

■  What’s wrong with this?
■ Note how there is only a small fraction of time per
thread where calculations are actually being done
■ The great majority of the time is spent waiting to
execute calculations again
■ This is a waste of valuable processor time
■ Do not do this

■  Solution
■ Write code that will minimize the amount of time
that the processor is not doing anything useful

Carnegie Mellon

Readers and Writers

cache

reader

writer

reader reader

reader

Carnegie Mellon

Readers and Writers

cache

reader

writer

reader reader

reader

:(

Carnegie Mellon

Readers and Writers

cache

reader

writer

reader reader

reader

Carnegie Mellon

Readers and Writers

cache

reader

writer

reader reader

reader

:(

Carnegie Mellon

Readers and Writers

cache

reader

writer

reader reader

reader

Carnegie Mellon

Concurrency and Starvation

■  In previous example, readers block one writer
■  Writer might not get the resource
■  Writer is being starved of resource

■  Make sure that readers don’t hold resource for long

Carnegie Mellon

Problem: Deadlock

Thread 1 Thread 2

I’ll give you x
if you give

me y.

I’ll give you y
if you give

me x.

Well, that’s
awkward.

Carnegie Mellon

Problem: Deadlock
■  Entire program will hang
■  Pay attention to how and where you lock/unlock
■  Program may or may not hang predictably

■  Thread scheduling is non-deterministic
■  Similar to race conditions, usually worse

■  Critical section should be as small as possible

Carnegie Mellon

Problem: Livelock
■  Similar to Deadlock

■  Two programs feed back on one another
■  Spins indefinitely instead of hanging

■  Two people trying to get past each other in a hallway
■  Both move the same direction simultaneously
■  Both do an awkward dance from side to side
■  Dance continues indefinitely

■  Often happens when threads attempt to compensate
for deadlock

Carnegie Mellon

Recognitions

■  Slides adapted from Jack Biggs

