
Carnegie	Mellon	

1

Proxy	Recita-on	

Jeffrey	Liu	
Recita4on	13:	November	23,	2015	

Carnegie	Mellon	

2

Outline	
¢  Ge3ng	content	on	the	web:	Telnet/cURL	Demo	

§  How	the	web	really	works	
¢  Networking	Basics	
¢  Proxy	

§  Due	Tuesday,	December	8th	
§  Grace	days	allowed	

¢  String	Manipula-on	in	C	

Carnegie	Mellon	

3

The	Web	in	a	Textbook	
¢  Client	request	page,	server	provides,	transac-on	done.	

	
	
	
	
	

¢  A	sequen-al	server	can	handle	this.	We	just	need	to	serve	
one	page	at	a	-me.	

¢  This	works	great	for	simple	text	pages	with	embedded	
styles.	

Web
server

Web
client

(browser)

Carnegie	Mellon	

4

Telnet/Curl	Demo	
¢  Telnet	

§  Interac4ve	remote	shell	–	like	ssh	without	security	
§  Must	build	HTTP	request	manually	

§  This	can	be	useful	if	you	want	to	test	response	to	malformed	
headers	

	[rjaganna@makoshark	~]%	telnet	www.cmu.edu	80	
	Trying	128.2.42.52...	
	Connected	to	WWW-CMU-PROD-VIP.ANDREW.cmu.edu	(128.2.42.52).	
	Escape	character	is	'^]'.	
	GET	http://www.cmu.edu/	HTTP/1.0	
		
	HTTP/1.1	301	Moved	Permanently	
	Date:	Sat,	11	Apr	2015	06:54:39	GMT	
	Server:	Apache/1.3.42	(Unix)	mod_gzip/1.3.26.1a	mod_pubcookie/3.3.4a	mod_ssl/2.8.31	OpenSSL/0.9.8e-
	fips-rhel5	
	Location:	http://www.cmu.edu/index.shtml	
	Connection:	close	
	Content-Type:	text/html;	charset=iso-8859-1	
		
	<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">	
	<HTML><HEAD>	
	<TITLE>301	Moved	Permanently</TITLE>	
	</HEAD><BODY>	
	<H1>Moved	Permanently</H1>	
	The	document	has	moved	here.<P>	
	<HR>	
	<ADDRESS>Apache/1.3.42	Server	at	www.cmu.edu	Port	
	 	80</ADDRESS>	
	</BODY></HTML>	
	Connection	closed	by	foreign	host.	

Carnegie	Mellon	

5

Telnet/cURL	Demo	
¢  cURL	

§  “URL	transfer	library”	with	a	command	line	program	
§  Builds	valid	HTTP	requests	for	you!	

	
§  Can	also	be	used	to	generate	HTTP	proxy	requests:	

	[rjaganna@makoshark	~]%	curl	http://www.cmu.edu/				
	<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">	
	<HTML><HEAD>	
	<TITLE>301	Moved	Permanently</TITLE>	
	</HEAD><BODY>	
	<H1>Moved	Permanently</H1>	
	The	document	has	moved	here.<P>	
	<HR>	
	<ADDRESS>Apache/1.3.42	Server	at	www.cmu.edu	Port	
	 	80</ADDRESS>	
	</BODY></HTML>	

	[rjaganna@makoshark	~]%	curl	--proxy	lemonshark.ics.cs.cmu.edu:3092	http://www.cmu.edu/	
	<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">	
	<HTML><HEAD>	
	<TITLE>301	Moved	Permanently</TITLE>	
	</HEAD><BODY>	
	<H1>Moved	Permanently</H1>	
	The	document	has	moved	here.<P>	
	<HR>	
	<ADDRESS>Apache/1.3.42	Server	at	www.cmu.edu	Port	
	80</ADDRESS>	
	</BODY></HTML>	

Carnegie	Mellon	

6

How	the	Web	Really	Works	
¢  In	reality,	a	single	HTML	page	today	may	depend	on	10s	

or	100s	of	support	files	(images,	stylesheets,	scripts,	etc.)	
¢  Builds	a	good	argument	for	concurrent	servers	

§  Just	to	load	a	single	modern	webpage,	the	client	would	have	to	
wait	for	10s	of	back-to-back	request	

§  I/O	is	likely	slower	than	processing,	so	back	
¢  Caching	is	simpler	if	done	in	pieces	rather	than	whole	

page	
§  If	only	part	of	the	page	changes,	no	need	to	fetch	old	parts	again	
§  Each	object	(image,	stylesheet,	script)	already	has	a	unique	URL	

that	can	be	used	as	a	key	

Carnegie	Mellon	

7

How	the	Web	Really	Works	
¢  Excerpt	from	www.cmu.edu/index.html:	

<html	lang="en"	xml:lang="en"	xmlns="http://www.w3.org/1999/xhtml">	
<head>	
		...	
		<link	href="homecss/cmu.css"	rel="stylesheet"	type="text/css"/>	
		<link	href="homecss/cmu-new.css"	rel="stylesheet"	type="text/css"/>	
		<link	href="homecss/cmu-new-print.css"	media="print"	rel="stylesheet"	type="text/
css"/>	
		<link	href="http://www.cmu.edu/RSS/stories.rss"	rel="alternate"	title="Carnegie	
Mellon	Homepage	Stories"	type="application/rss+xml"/>	
		...	
		<script	language="JavaScript"	src="js/dojo.js"	type="text/javascript"></script>	
		<script	language="JavaScript"	src="js/scripts.js"	type="text/javascript"></
script>	
		<script	language="javascript"	src="js/jquery.js"	type="text/javascript"></script>	
		<script	language="javascript"	src="js/homepage.js"	type="text/javascript"></
script>	
		<script	language="javascript"	src="js/app_ad.js"	type="text/javascript"></script>	
		...	
		<title>Carnegie	Mellon	University	|	CMU</title>	
</head>	
<body>	...	

Carnegie	Mellon	

8

Sequen-al	Proxy	

Carnegie	Mellon	

9

Sequen-al	Proxy	
¢  Note	the	sloped	shape	of	when	requests	finish	

§  Although	many	requests	are	made	at	once,	the	proxy	does	not	
accept	a	new	job	un4l	it	finishes	the	current	one	

§  Requests	are	made	in	batches.	This	results	from	how	HTML	is	
structured	as	files	that	reference	other	files.	

¢  Compared	to	the	concurrent	example	(next),	this	page	
takes	a	long	-me	to	load	with	just	sta-c	content	

Carnegie	Mellon	

10

Concurrent	Proxy	

Carnegie	Mellon	

11

Concurrent	Proxy	
¢  Now,	we	see	much	less	purple	(wai-ng),	and	less	-me	

spent	overall.	
¢  No-ce	how	mul-ple	green	(receiving)	blocks	overlap	in	

-me	
§  Our	proxy	has	mul4ple	connec4ons	open	to	the	browser	to	handle	

several	tasks	at	once	

Carnegie	Mellon	

12

How	the	Web	Really	Works	
¢  A	note	on	AJAX	(and	XMLHZpRequests)	

§  Normally,	a	browser	will	make	the	ini4al	page	request	then	request	
any	suppor4ng	files	

§  And	XMLHapRequest	is	simply	a	request	from	the	page	once	it	has	
been	loaded	&	the	scripts	are	running	

§  The	dis4nc4on	does	not	maaer	on	the	server	side	–	everything	is	
an	HTTP	Request	

Carnegie	Mellon	

13

Outline	
¢  Ge3ng	content	on	the	web:	Telnet/cURL	Demo	

§  How	the	web	really	works	
¢  Networking	Basics	
¢  Proxy	

§  Due	Tuesday,	December	8th	
§  Grace	days	allowed	

¢  String	Manipula-on	in	C	

14

Carnegie Mellon

Sockets	

¢  What	is	a	socket?	
§  To	an	applica4on,	a	socket	is	a	file	descriptor	that	lets	the	applica4on	read/

write	from/to	the	network	
§  (all	Unix	I/O	devices,	including	networks,	are	modeled	as	files)	

¢  Clients	and	servers	communicate	with	each	other	by	
reading	from	and	wri-ng	to	socket	descriptors	

	

	

¢  The	main	difference	between	regular	file	I/O	and	socket	I/
O	is	how	the	applica-on	“opens”	the	socket	descriptors	

15

Carnegie Mellon

Overview	of	the	Sockets	Interface	

Client	/	
Server	
Session	

Client	 Server	

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connec4on	
request	

rio_readlineb

close

close EOF	

Await	connec4on	
request	from	
next	client	

open_listenfd
open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

16

Host	and	Service	Conversion:	getaddrinfo
¢  getaddrinfo	is	the	modern	way	to	convert	string	representa4ons	of	

host,	ports,	and	service	names	to	socket	address	structures.		
§  Replaces	obsolete	gethostbyname	-	unsafe	because	it	returns	a	

pointer	to	a	sta4c	variable	

¢  Advantages:	
§  Reentrant	(can	be	safely	used	by	threaded	programs).	
§  Allows	us	to	write	portable	protocol-independent	code(IPv4	and	IPv6)	
§  Given	host	and	service,	getaddrinfo returns	result	that	

points	to	a	linked	list	of	addrinfo	structs,	each	poin4ng	to	socket	
address	struct,	which	contains	arguments	for	sockets	APIs.	

¢  getnameinfo	is	the	inverse	of	getaddrinfo,	conver-ng	a	
socket	address	to	the	corresponding	host	and	service.	

Sockets	API	
¢  int	socket(int	domain,	int	type,	int	protocol);	

§  Create	a	file	descriptor	for	network	communica4on	
§  used	by	both	clients	and	servers	
§  int	sock_fd	=	socket(PF_INET,	SOCK_STREAM,	IPPROTO_TCP);	
§  One	socket	can	be	used	for	two-way	communica4on	
	

¢  int	bind(int	socket,	const	struct	sockaddr	*address,	
socklen_t	address_len);	
§  Associate	a	socket	with	an	IP	address	and	port	number	
§  used	by	servers	
§  struct	sockaddr_in	sockaddr	–	family,	address,	port	
	

17

Carnegie Mellon

Sockets	API	
¢  int	listen(int	socket,	int	backlog);	

§  socket:	socket	to	listen	on	
§  used	by	servers	
§  backlog:	maximum	number	of	wai4ng	connec4ons	
§  err	=	listen(sock_fd,	MAX_WAITING_CONNECTIONS);	
	

¢  int	accept(int	socket,	struct	sockaddr	*address,	socklen_t	
*address_len);	
§  used	by	servers	
§  socket:	socket	to	listen	on	
§  address:	pointer	to	sockaddr	struct	to	hold	client	informa4on	amer	

accept	returns	
§  return:	file	descriptor	

18

Carnegie Mellon

Sockets	API	
¢  int	connect(int	socket,	struct	sockaddr	*address,	socklen_t	

address_len);	
§  aaempt	to	connect	to	the	specified	IP	address	and	port	described	in	

address	
§  used	by	clients	
	

¢  int	close(int	fd);	
§  used	by	both	clients	and	servers	
§  (also	used	for	file	I/O)	
§  fd:	socket	fd	to	close	

19

Carnegie Mellon

Sockets	API	
¢  ssize_t	read(int	fd,	void	*buf,	size_t	nbyte);	

§  used	by	both	clients	and	servers	
§  (also	used	for	file	I/O)	
§  fd:	(socket)	fd	to	read	from	
§  buf:	buffer	to	read	into	
§  nbytes:	buf	length	

¢  ssize_t	write(int	fd,	void	*buf,	size_t	nbyte);	
§  used	by	both	clients	and	servers	
§  (also	used	for	file	I/O)	
§  fd:	(socket)	fd	to	write	to	
§  buf:	buffer	to	write	
§  nbytes:	buf	length	

20

Carnegie Mellon

Carnegie	Mellon	

21

Outline	
¢  Ge3ng	content	on	the	web:	Telnet/cURL	Demo	

§  How	the	web	really	works	
¢  Networking	Basics	
¢  Proxy	

§  Due	Tuesday,	December	8th	
§  Grace	days	allowed	

¢  String	Manipula-on	in	C	

Carnegie	Mellon	

22

Byte	Ordering	Reminder	
¢  So,	how	are	the	bytes	within	a	mul--byte	word	ordered	in	

memory?	
¢  Conven-ons	
§  Big	Endian:	Sun,	PPC	Mac,	Internet	

§  Least	significant	byte	has	highest	address	
§  Liale	Endian:	x86,	ARM	processors	running	Android,	iOS,	and	

Windows	
§  Least	significant	byte	has	lowest	address	

Carnegie	Mellon	

23

Byte	Ordering	Reminder	
¢  So,	how	are	the	bytes	within	a	mul--byte	word	ordered	in	

memory?	
¢  Conven-ons	

§  Big	Endian:	Sun,	PPC	Mac,	Internet	
§  Least	significant	byte	has	highest	address	

¢  Make	sure	to	use	correct	endianness	

Carnegie	Mellon	

24

Proxy	-	Func-onality	
¢  Should	work	on	vast	majority	of	sites	

§  Twitch,	CNN,	NY	Times,	etc.	
§  Some	features	of	sites	which	require	the	POST	opera4on	(sending	

data	to	the	website),	will	not	work	
-  Logging	in	to	websites,	sending	Facebook	message	

§  HTTPS	is	not	expected	to	work	
§  Google,		YouTube	(and	some	other	popular	websites)	now	try	

to	push	users	to	HTTPs	by	default;	watch	out	for	that	
¢  Cache	previous	requests	

§  Use	LRU	evic4on	policy	
§  Must	allow	for	concurrent	reads	while	maintaining	consistency	

§  Details	in	write	up	

Carnegie	Mellon	

25

Proxy	-	Func-onality	
¢  Why	a	mul--threaded	cache?	

n  Sequen4al	cache	would	boaleneck	parallel	proxy	

n  Mul4ple	threads	can	read	cached	content	safely	

n  Search	cache	for	the	right	data	and	return	it	
n  Two	threads	can	read	from	the	same	cache	block	

n  But	what	about	wri4ng	content?	

n  Overwrite	block	while	another	thread	reading?	

n  Two	threads	wri4ng	to	same	cache	block?	

Carnegie	Mellon	

26

Proxy	-	How	
¢  Proxies	are	a	bit	special	-	they	are	a	server	and	a	client	at	the	same	

4me.	
¢  They	take	a	request	from	one	computer	(ac4ng	as	the	server),	and	

make	it	on	their	behalf	(as	the	client).	
¢  Ul4mately,	the	control	flow	of	your	program	will	look	like	a	server,	but	

will	have	to	act	as	a	client	to	complete	the	request	

¢  Start	small	
§  Grab	yourself	a	copy	of	the	echo	server	(pg.	946)	and	client	(pg.	

947)	in	the	book	
§  Also	review	the	4ny.c	basic	web	server	code	to	see	how	to	deal	

with	HTTP	headers	
§  Note	that	4ny.c	ignores	these;	you	may	not	

Carnegie	Mellon	

27

Proxy	-	How	
¢  What	you	end	up	with	will	resemble:	

Server	
(port	80)	Client	

Client	socket	address	
128.2.194.242:51213	

Server	socket	address	
208.216.181.15:80	

Proxy	

Proxy	server	socket	address	
128.2.194.34:15213	

Proxy	client	socket	address	
128.2.194.34:52943	

Carnegie	Mellon	

28

Summary	
¢  Step	1:	Sequen-al	Proxy	

§  Works	great	for	simple	text	pages	with	embedded	styles	
	

¢  Step	2:	Concurrent	Proxy	
§  mul4-threading	
	

¢  Step	3	:	Cache	Web	Objects	
§  Cache	individual	objects,	not	the	whole	page	
§  Use	an	LRU	evic-on	policy	
§  Your	caching	system	must	allow	for	concurrent	reads	while	

maintaining	consistency.	Concurrency?	Shared	Resource?	

Carnegie	Mellon	

29

Proxy	–	Tes-ng	&	Grading	
¢  New:	Autograder	

§  ./driver.sh	will	run	the	same	tests	as	autolab:	
§  Ability	to	pull	basic	web	pages	from	a	server	
§  Handle	a	(concurrent)	request	while	another	request	is	s4ll	
pending	

§  Fetch	a	web	page	again	from	your	cache	amer	the	server	has	
been	stopped	

§  This	should	help	answer	the	ques4on	“is	this	what	my	proxy	is	
supposed	to	do?”	

§  Please	don’t	use	this	grader	to	defini4vely	test	your	proxy;	there	
are	many	things	not	tested	here	

Carnegie	Mellon	

30

Proxy	–	Tes-ng	&	Grading	
¢  Test	your	proxy	liberally	

§  The	web	is	full	of	special	cases	that	want	to	break	your	proxy	
§  Generate	a	port	for	yourself	with	./port-for-user.pl	[andrewid]	
§  Generate	more	ports	for	web	servers	and	such	with	./free-port.sh	
§  Consider	using	your	andrew	web	space	(~/www)	to	host	test	files	

§  You	have	to	visit	
haps://www.andrew.cmu.edu/server/publish.html	to	publish	
your	folder	to	the	public	server	

¢  Create	a	handin	file	with	make	handin	
§  Will	create	a	tar	file	for	you	with	the	contents	of	your	proxylab-

handin	folder	

Carnegie	Mellon	

31

Outline	
¢  Ge3ng	content	on	the	web:	Telnet/cURL	Demo	

§  How	the	web	really	works	
¢  Networking	Basics	
¢  Proxy	

§  Due	Tuesday,	December	8th	
§  Grace	days	allowed	

¢  String	Manipula-on	in	C	

Carnegie	Mellon	

32

String	manipula-on	in	C	
¢  sscanf:	Read	input	in	specific	format	

int	sscanf(const	char	*str,	const	char	*format,	…);	
	
Example:	
buf	=	“213	is	awesome”	
	
//	Read	integer	and	string	separated	by	white	space	from	buffer	‘buf’		
//	into	passed	variables	
ret	=	sscanf(buf,	“%d		%s		%s”,	&course,	str1,	str2);	
	
This	results	in:	
course	=	213,		str1	=	is,		str2	=	awesome,		ret	=	3	

Carnegie	Mellon	

33

String	manipula-on	(cont)	
¢  sprine:	Write	input	into	buffer	in	specific	format	

int	sprinI(char	*str,	const	char	*format,	…);	
	
Example:	
buf[100];	
str	=	“213	is	awesome”	
	
//	Build	the	string	in	double	quotes	(“”)	using	the	passed	arguments	
//	and	write	to	buffer	‘buf’	
sprinI(buf,	“String	(%s)		is	of	length	%d”,	str,	strlen(str));	
	
This	results	in:	
buf	=	String	(213	is	awesome)	is	of	length	14	

Carnegie	Mellon	

34

String	manipula-on	(cont)	
Other	useful	string	manipula-on	func-ons:	
¢  strcmp,	strncmp,	strncasecmp	
¢  strstr	
¢  strlen	
¢  strcpy,	strncpy	

Carnegie	Mellon	

35

Aside:	Se3ng	up	Firefox	to	use	a	proxy	

¢  You	may	use	any	browser,	
but	we’ll	be	grading	with	
Firefox	

¢  Preferences	>	Advanced	>	
Network	>	Se3ngs…	
(under	Connec-on)	

¢  Check	“Use	this	proxy	for	
all	protocols”	or	your	proxy	
will	appear	to	work	for	
HTTPS	traffic.	

Carnegie	Mellon	

36

Acknowledgements	
¢  Slides	derived	from	recita-on	slides	of	last	2	years	by	

§  Shiva	
§  Hartaj	Singh	Dugal	
§  Ian	Hartwig	
§  Rohith	Jagannathan		

Carnegie	Mellon	

37

Ques-ons?	

